Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(03): 340-343
DOI: 10.1055/s-0036-1591496
DOI: 10.1055/s-0036-1591496
letter
Aluminum(III) Chloride Promoted Oxygen Transfer: Selective Oxidation of Sulfides to Sulfoxides
We acknowledge financial support from the Natural Science Foundation of China (NSFC, Grant Nos. 31370039 and 21602118) and from the Tianjin Natural Science Foundation (16JCYBJC29400).Further Information
Publication History
Received: 10 August 2017
Accepted after revision: 26 September 2017
Publication Date:
24 November 2017 (online)
![](https://www.thieme-connect.de/media/synlett/201803/lookinside/thumbnails/st-2017-w0619-l_10-1055_s-0036-1591496-1.jpg)
Abstract
An efficient selective oxidation of sulfides to sulfoxides has been developed by means of AlCl3-promoted oxygen transfer from phenyliodine diacetate [PhI(OAc)2]. AlCl3 proved to be the optimal Lewis acid for the activation of PhI(OAc)2. Various substituted sulfides were selectively transformed into the corresponding sulfoxides in good to excellent yields (≤99%). The high efficiency, excellent functional-group compatibility, broad substrate scope, and mild conditions render the current transformation useful for the synthesis of sulfoxides.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591496.
- Supporting Information
-
References and Notes
- 1a Carreno MC. Chem. Rev. 1995; 95: 1717
- 1b Oyama T. Naka K. Chujo Y. Macromolecules 1999; 32: 5240
- 1c Legros J. Dehli JR. Bolm C. Adv. Synth. Catal. 2005; 347: 19
- 1d Bentley R. Chem. Soc. Rev. 2005; 34: 609
- 1e Numata M. Aoyagi Y. Tsuda Y. Yarita T. Takatsu A. Anal. Chem. 2007; 79: 9211
- 1f Dini I. Tenore GC. Dini A. J. Nat. Prod. 2008; 71: 2036
- 1g El-Aasr M. Fujiwara Y. Takeya M. Ikeda T. Tsukamoto S. Ono M. Nakano D. Okawa M. Kinjo J. Yoshimitsu H. Nohara T. J. Nat. Prod. 2010; 73: 1306
- 1h Wyche TP. Piotrowski JS. Hou Y. Braun D. Deshpande R. McIlwain S. Ong IM. Myers CL. Guzei IA. Westler WM. Andes DR. Bugni TS. Angew. Chem. Int. Ed. 2014; 53: 11583
- 2a Fernández I. Khiar N. Chem. Rev. 2003; 103: 3651
- 2b Lang F. Li D. Chen J. Chen J. Li L. Cun L. Zhu J. Deng J. Liao J. Adv. Synth. Catal. 2010; 352: 843
- 2c Chen J. Chen J. Lang F. Zhang X. Cun L. Zhu J. Deng J. Liao J. J. Am. Chem. Soc. 2010; 132: 4552
- 2d Jin S.-S. Wang H. Xu M.-H. Chem. Commun. 2011; 47: 7230
- 2e Qi W.-Y. Zhu T.-S. Xu M.-H. Org. Lett. 2011; 13: 3410
- 2f Chen C. Gui J. Li L. Liao J. Angew. Chem. Int. Ed. 2011; 50: 7681
- 2g Du L. Cao P. Xing J. Lou Y. Jiang L. Li L. Liao J. Angew. Chem. Int. Ed. 2013; 52: 4207
- 2h Wang D. Cao P. Wang B. Jia T. Lou Y. Wang M. Liao J. Org. Lett. 2015; 17: 2420
- 2i Barrett MJ. Khan GF. Davies PW. Grainger RS. Chem. Commun. 2017; 53: 5733
- 2j Otocka S. Kwiatkowska M. Madalińska L. Kiełbasiński P. Chem. Rev. 2017; 117: 4147
- 3a Omura K. Swern D. Tetrahedron 1978; 34: 1651
- 3b Khenkin AM. Neumann R. J. Am. Chem. Soc. 2002; 124: 4198
- 4a Fernández de la Pradilla R. Colomer I. Viso A. Org. Lett. 2012; 14: 3068
- 4b Colomer I. Gheewala C. Simal C. Velado M. Fernández de la Pradilla R. Viso A. J. Org. Chem. 2016; 81: 4081
- 5a Eberhart AJ. Cicoira C. Procter DJ. Org. Lett. 2013; 15: 3994
- 5b Eberhart AJ. Procter DJ. Angew. Chem. Int. Ed. 2013; 52: 4008
- 5c Eberhart AJ. Shrives H. Zhang Y. Carrër A. Parry AV. S. Tate DJ. Turner ML. Procter DJ. Chem. Sci. 2016; 7: 1281
- 5d Fernández-Salas JA. Eberhart AJ. Procter DJ. J. Am. Chem. Soc. 2016; 138: 790
- 5e Yanagi T. Otsuka S. Kasuga Y. Fujimoto K. Murakami K. Nogi K. Yorimitsu H. Osuka A. J. Am. Chem. Soc. 2016; 138: 14582
- 5f Zhang Q. Wang W. Gao C. Cai R.-R. Xu R.-S. RSC Adv. 2017; 7: 20123
- 6a Chinnusamy T. Reiser O. ChemSusChem 2010; 3: 1040
- 6b Neveselý T. Svobodová E. Chudoba J. Sikorski M. Cibulka R. Adv. Synth. Catal. 2016; 358: 1654
- 7a Legros J. Bolm C. Angew. Chem. Int. Ed. 2003; 42: 5487
- 7b Legros J. Bolm C. Angew. Chem. Int. Ed. 2004; 43: 4225
- 7c Griffin RJ. Henderson A. Curtin NJ. Echalier A. Endicott JA. Hardcastle IR. Newell DR. Noble ME. M. Wang L.-Z. Golding BT. J. Am. Chem. Soc. 2006; 128: 6012
- 7d Egami H. Katsuki T. J. Am. Chem. Soc. 2007; 129: 8940
- 7e Li B. Liu A.-H. He L.-N. Yang Z.-Z. Gao J. Chen K.-H. Green Chem. 2012; 14: 130
- 7f Gan S. Yin J. Yao Y. Liu Y. Chang D. Zhua D. Shi L. Org. Biomol. Chem. 2017; 15: 2647
- 7g Voutyritsa E. Triandafillidi I. Kokotos CG. Synthesis 2017; 49: 917
- 8 Moorthy JN. Senapati K. Parida KN. Jhulki S. Sooraj K. Nair NN. J. Org. Chem. 2011; 76: 9593
- 9a Zhang H. Chen C.-Y. Liu R.-H. Xu Q. Liu J.-H. Synth. Commun. 2008; 38: 4445
- 9b Kinen CO. Rossi LI. de Rossi RH. J. Org. Chem. 2009; 74: 7132
- 9c Maleki B. Hemmati S. Sedrpoushan A. Ashrafia SS. Veisi H. RSC Adv. 2014; 4: 40505
- 9d Hu Y. Fang D. Xing R. RSC Adv. 2014; 4: 51140
- 9e Baig N. Madduluri VK. Sah AK. RSC Adv. 2016; 6: 28015
- 9f Yu B. Diao Z.-F. Liu A.-H. Han X. Li B. He L.-N. Liu X.-M. Curr. Org. Synth. 2014; 11: 156
- 10 Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 11a Shukla VG. Salgaonkar PD. Akamanchi KG. J. Org. Chem. 2003; 68: 5422
- 11b Koposov AY. Zhdankin VV. Synthesis 2005; 22
- 11c Achar TK. Maiti S. Mal P. RSC Adv. 2014; 4: 12834
- 12a Yusubov MS. Yusubova RY. Funk TV. Chi K.-W. Zhdankin VV. Synthesis 2009; 2505
- 12b Yu B. Guo C.-X. Zhong C.-L. Diao Z.-F. He L.-N. Tetrahedron Lett. 2014; 55: 1818
- 13 Xie Y. Zhou B. Zhou S. Zhou S. Wei W. Liu J. Zhan Y. Cheng D. Chen M. Li Y. Wang B. Xue X.-S. Li Z. ChemistrySelect 2017; 2: 1620
- 14 Izquierdo S. Essafi S. del Rosal I. Vidossich P. Pleixats R. Vallribera A. Ujaque G. Lledós A. Shafir A. J. Am. Chem. Soc. 2016; 138: 12747
- 15 The composition of the byproduct mixture was rather complicated. The main byproduct, (phenylsulfanyl)methyl acetate was isolated in 37% yield.
- 16 Sulfoxides 2; General Procedure A 25 mL glass tube was charged with the appropriate sulfide 1 (1 mmol), MeOH (0.5 mL), and CH2Cl2 (4.5 mL). AlCl3 (0.5 mmol) was added, and the mixture was stirred at r.t. for 1 min. PhI(OAc)2 (1.0 equiv) was then added and the solution was stirred at r.t. until the sulfide was consumed (TLC). The solvent was removed under reduced pressure and the crude product was purified by column chromatography [silica gel (200–300 mesh), EtOAc–PE]. Methyl Phenyl Sulfoxide (2a) Colorless oil; yield: 138.6 mg (99%). 1H NMR (400 MHz, CDCl3): δ = 7.65 (dd, J = 7.8, 1.8 Hz, 2 H), 7.56–7.47 (m, 3 H), 2.72 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 145.33, 130.99, 129.28, 123.41, 43.71. MS (ESI): m/z [M + H]+ calcd for C7H9OS: 141.0; found: 141.0. 4-Fluorophenyl Methyl Sulfoxide (2b) Colorless oil; yield: 132.7 mg (84%). 1H NMR (400 MHz, CDCl3): δ = 7.70–7.63 (m, 2 H), 7.28–7.21 (m, 2 H), 2.73 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 165.47, 162.97, 140.94, 125.88, 125.80, 116.73, 116.50, 43.97. MS (ESI): m/z [M + H]+ calcd for C7H8FOS: 159.0; found: 158.8. 4-Chlorophenyl Methyl Sulfoxide (2c) Colorless oil; yield: 160.1 mg (92%). 1H NMR (400 MHz, CDCl3): δ = 7.59 (d, J = 8.4 Hz, 2 H), 7.51 (d, J = 8.6 Hz, 2 H), 2.72 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 144.05, 137.06, 129.52, 124.92, 43.84. MS (ESI): m/z [M + H]+ calcd for C7H8ClOS: 175.0; found: 175.1. 4-Bromophenyl Methyl Sulfoxide (2d) White solid; yield: 189.7 mg (87%); mp 79–81°C. 1H NMR (400 MHz, CDCl3): δ = 7.65 (d, J = 8.5 Hz, 2 H), 7.51 (d, J = 8.5 Hz, 2 H), 2.70 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 144.85, 132.58, 125.47, 125.19, 44.00. MS (ESI): m/z [M + H]+ calcd for C7H8BrOS: 218.9; found: 218.9.