RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2018; 29(03): 310-313
DOI: 10.1055/s-0036-1591506
DOI: 10.1055/s-0036-1591506
letter
Iodonium-Induced Cyclization of N-Allenylindoles and N-Allenylpyrroles: An Access to Iododihydropyrido[1,2-a]indoles and Dihydroindolizines
This work was supported by the Ministère de l’Education et de la Recherche, the Centre National de la Recherche Scientifique (CNRS), and the Agence Nationale de la Recherche. C.G. is grateful to the Agence Nationale de la Recherche (ANR-13-JS07-0010) for a doctoral grant (2013–2016).Weitere Informationen
Publikationsverlauf
Received: 25. Juli 2017
Accepted after revision: 02. Oktober 2017
Publikationsdatum:
14. November 2017 (online)
Abstract
The formation of iodinated dihydropyrido[1,2-a]indoles and dihydroindolizines was achieved by an iodocarbocyclization reaction of N-allenylindoles and N-allenylpyrroles. This transformation proceeded under very mild conditions using N-iodosuccinimide as the electrophilic iodine source to deliver the products via a 6-endo cyclization process. Careful choice of the solvent and concentration were mandatory to obtain the cyclization in good yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591506.
- Supporting Information
-
References and Notes
- 1a Aygun A. Pindur U. Curr. Med. Chem. 2003; 10: 1113
- 1b Leena Gupta BS. P. Archna Talwar BS. P. Prem MS. Chauhan BS. P. Curr. Med. Chem. 2007; 14: 1789
- 1c Schmuck C. Rupprecht D. Synthesis 2017; 49: 3095
- 1d Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
- 1e Ishikura M. Yamada K. Abe T. Nat. Prod. Rep. 2010; 27: 1630
- 1f Mal D. Shome B. Dinda BK. In Heterocycles in Natural Product Synthesis . Majumdar KC. Chattopadhyay SK. Wiley-VCH; Weinheim: 2011. Chap.
- 2 Nichols DE. Nichols CD. Chem. Rev. 2008; 108: 1614
- 3a Tfelt-Hansen P. De Vries P. Saxena PR. Drugs 2000; 60: 1259
- 3b Zhang M.-Z. Chen Q. Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
- 4 Mori M. Heterocycles 2010; 81: 259
- 5a Kam T.-S. Sim K.-M. Lim T.-M. Tetrahedron Lett. 2000; 41: 2733
- 5b Torres-Ochoa RO. Reyes-Gutiérrez PE. Martínez R. Eur. J. Org. Chem. 2014; 48
- 6 Liang X. Jiang S.-Z. Wei K. Yang Y.-R. J. Am. Chem. Soc. 2016; 138: 2560
- 7 Linde HA. Helv. Chim. Acta 1965; 14: 5179
- 8a Pace WH. Mo D.-L. Reidl TW. Wink DJ. Anderson LL. Angew. Chem. Int. Ed. 2016; 55: 9183
- 8b Srivastava A. Biswas S. Singh S. Mobin SM. Samanta S. RSC Adv. 2015; 5: 26891
- 8c Patil DV. Cavitt MA. Grzybowski P. France S. Chem. Commun. 2011; 47: 10278
- 8d Zhu H. Stöckigt J. Yu Y. Zou H. Org. Lett. 2011; 13: 2792
- 8e Mizutani M. Inagaki F. Nakanishi T. Yanagihara C. Tamai I. Mukai C. Org. Lett. 2011; 13: 1796
- 8f Facoetti D. Abbiati G. Rossi E. Eur. J. Org. Chem. 2009; 2872
- 8g Biechy A. Zard SZ. Org. Lett. 2009; 11: 2800
- 8h Li Z. Zhu A. Yang J. J. Heterocycl. Chem. 2012; 49: 1458
- 8i Du D. Li L. Wang Z. J. Org. Chem. 2009; 74: 4379 ; and references cited herein
- 9a Liu Z. Wasmuth AS. Nelson SG. J. Am. Chem. Soc. 2006; 128: 10352
- 9b Tarselli MA. Gagné MR. J. Org. Chem. 2008; 73: 2439
- 9c Barluenga J. Piedrafita M. Ballesteros A. Suárez-Sobrino ÁL. González JM. Chem. Eur. J. 2010; 16: 11827
- 10a Shapiro ND. Toste FD. Synlett 2010; 675
- 10b Gorin DJ. Sherry BD. Toste FD. Chem. Rev. 2008; 108: 3351
- 10c Li Z. Brouwer C. He C. Chem. Rev. 2008; 108: 3239
- 10d Arcadi A. Chem. Rev. 2008; 108: 3266
- 10e Hashmi AS. K. Chem. Rev. 2007; 107: 3180
- 10f Hashmi AS. K. Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
- 10g Díez-González S. Marion N. Nolan SP. Chem. Rev. 2009; 109: 3612
- 10h Modern Gold Catalyzed Synthesis . Hashmi AS. K. Toste FD. Wiley-VCH; Weinheim: 2012
- 10i Gold Catalysis: An Homogeneous Approach . Toste FD. Michelet V. Imperial College Press; London: 2014
- 11a Hummel S. Kirsch SF. Beilstein J. Org. Chem. 2011; 7: 847
- 11b Yamamoto Y. Gridnev ID. Patil NT. Jin T. Chem. Commun. 2009; 34: 5075
- 12a Abdul-Malik NF. Awad SB. Sakla AB. Helv. Chim. Acta 1979; 62: 1872
- 12b Barluenga J. Campos-Gómez E. Minatti A. Rodríguez D. González JM. Chem. Eur. J. 2009; 15: 8946
- 12c Wang M. Li J. Fu C. Ma S. Org. Lett. 2014; 16: 4976
- 12d Li G. Zhang-Negrerie D. Du Y. Synthesis 2017; 49: 2917
- 13a Zhang L. Zhu Y. Yin G. Lu P. Wang Y. J. Org. Chem. 2012; 77: 9510
- 13b Song H. Liu Y. Wang Q. Org. Lett. 2013; 15: 3274
- 13c Wang J. Zhu H.-T. Qiu Y.-F. Niu Y. Chen S. Li Y.-X. Liu X.-Y. Liang Y.-M. Org. Lett. 2015; 17: 3186
- 13d Verma AK. Shukla SP. Singh J. Rustagi V. J. Org. Chem. 2011; 76: 5670
- 13e Martins GM. Zeni G. Back DF. Kaufman TS. Silveira CC. Adv. Synth. Catal. 2015; 357: 3255
- 14 Wang J. Zhu H. Chen S. Xia Y. Jin D. Qiu Y. Li Y. Liang Y. J. Org. Chem. 2016; 81: 10975
- 15 Grandclaudon C. Michelet V. Toullec PY. Org. Lett. 2016; 18: 676
- 16 Diminished yields were obtained when longer reaction times were employed due to decomposition.
- 17 General Procedure for the Iodocyclization of Allenyl Substrates To a dry flask equipped with a magnetic stir bar were added the allenyl substrate (0.2 mmol, 1 equiv) and CH3CN (5 mL); then NIS (0.24 mmol, 1.2 equiv) dissolved in CH3CN (5 mL) was added. After stirring at room temperature for 10 min, TLC analysis showed complete conversion of the substrate, and the reaction mixture was quenched with sat. aq Na2S2O3 (5 mL). The aqueous phase was extracted with EtOAc (2 × 10 mL), the combined organic layers were washed with brine, dried over MgSO4, filtered, and concentrated under reduced pressure to afford the crude product, which was then purified by flash chromatography to give the desired cyclized compound. Compound 2b was obtained as a colorless oil in 75% yield (53.4 mg). Rf = 0.38 (petroleum ether/dichloromethane = 95:5). 1H NMR (300 MHz, CDCl3): δ = 7.57 (dd, J = 6.7, 1.5 Hz, 1 H), 7.26–7.09 (m, 3 H), 4.57 (s, 2 H), 2.44 (s, 3 H), 2.14 (s, 3 H), 1.62 (s, 6 H). 13C NMR (75 MHz, CDCl3): δ = 134.7 (Cq), 133.6 (Cq), 130.2 (Cq), 129.5 (Cq), 120.9 (CH), 119.5 (CH), 117.9 (CH), 115.9 (Cq), 108.6 (CH), 104.5 (Cq), 46.8 (CH2), 40.7 (Cq), 30.5 (2CH3), 28.5 (CH3), 10.9 (CH3). APCI-MS: m/z = 352 [M + H]+.
For selected examples, see: