Synlett 2018; 29(08): 1008-1013
DOI: 10.1055/s-0036-1591560
account
© Georg Thieme Verlag Stuttgart · New York

Skeletal Rearrangements as Strategies for the Total Syntheses of Indole Alkaloids

Xiaoni Xie
School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. of China   Email: zuliansuo@biomed.tsinghua.edu.cn
,
School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. of China   Email: zuliansuo@biomed.tsinghua.edu.cn
› Author Affiliations

The authors are grateful to National Natural Science Foundation of China (21302107, 21672123) for financial support.

Further Information

Publication History

Received: 13.0 2.2018

Accepted after revision: 10 March 2018

Publication Date:
04 April 2018 (online)


Dedicated to Professor Neil K. Garg for leading L. Zu into the field of total synthesis

Abstract

In this account, we summarize our recent efforts in the total syntheses of several indole alkaloids, including minfiensine, calophyline A, deformylcorymine, strictamine, and goniomitine. Our central theme is to utilize skeletal rearrangements as key strategies for generating complex structures.

1 Introduction

2 The Development of an Aza-Pinacol Rearrangement

3 Applications of Aza-Pinacol Rearrangements in Total ­Syntheses

4 Strategy Extension: The Total Synthesis of Goniomitine

5 Conclusion

 
  • References


    • For selected reviews and accounts of akuammiline natural products, see:
    • 1a Ramirez A. Garcia-Rubio S. Curr. Med. Chem. 2003; 10: 1891
    • 1b Zhang D. Song H. Qin Y. Acc. Chem. Res. 2011; 44: 447
    • 1c Eckermann R. Gaich T. Synthesis 2013; 45: 2813
    • 1d Smith JM. Moreno J. Boal BW. Garg NK. Angew. Chem. Int. Ed. 2015; 54: 400
    • 1e Zi W. Zuo Z. Ma D. Acc. Chem. Res. 2015; 48: 702
    • 1f Susick RB. Morrill LA. Picazo E. Garg NK. Synlett 2017; 28: 1
    • 1g Wang C. Zhang S. Wang Y. Huang S. Hong R. Org. Chem. Front. 2018; 5: 447

      Total syntheses of akuammiline natural products; for vincorine, see:
    • 2a Zhang M. Huang X. Shen L. Qin Y. J. Am. Chem. Soc. 2009; 131: 6013
    • 2b Zi W. Xie W. Ma D. J. Am. Chem. Soc. 2012; 134: 9126
    • 2c Horning BD. MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 6442

    • for aspidophylline A, see:
    • 2d Zu L. Boal BW. Garg NK. J. Am. Chem. Soc. 2011; 133: 8877
    • 2e Li Q. Li G. Ma S. Feng P. Shi Y. Org. Lett. 2013; 15: 2601
    • 2f Teng M. Zi W. Ma D. Angew. Chem. Int. Ed. 2014; 53: 1814
    • 2g Ren W. Wang Q. Zhu J. Angew. Chem. Int. Ed. 2014; 53: 1818
    • 2h Jiang S. Zeng X. Liang X. Lei T. Wei K. Yang Y. Angew. Chem. Int. Ed. 2016; 55: 4044
    • 2i Wang T. Duan X. Zhao H. Zhai S. Tao C. Wang H. Li Y. Cheng B. Zhai H. Org. Lett. 2017; 19: 1650

    • ;for scholarisine A, see:
    • 2j Adams GL. Carroll PJ. Smith III AB. J. Am. Chem. Soc. 2012; 134: 4037
    • 2k Adams GL. Carroll PJ. Smith III AB. J. Am. Chem. Soc. 2013; 135: 519
    • 2l Smith MW. Snyder SA. J. Am. Chem. Soc. 2013; 135: 12964

    • ; for picrinine, see:
    • 2m Smith JM. Moreno J. Boal BW. Garg NK. J. Am. Chem. Soc. 2014; 136: 4504
    • 2n Smith JM. Moreno J. Boal BW. Garg NK. J. Org. Chem. 2015; 80: 8954

    • ; for strictamine, see:
    • 2o Moreno J. Picazo E. Morrill LA. Smith JM. Garg NK. J. Am. Chem. Soc. 2016; 138: 1162
    • 2p Ren W. Wang Q. Zhu J. Angew. Chem. Int. Ed. 2016; 55: 3500
    • 2q Nishiyama D. Ohara A. Chiba H. Kumagai H. Oishi S. Fujii N. Ohno H. Org. Lett. 2016; 18: 1670
    • 2r Eckermann R. Breunig M. Gaich T. Chem. Commun. 2016; 52: 11363
    • 2s Eckermann R. Breunig M. Gaich T. Chem. Eur. J. 2017; 23: 3938
    • 2t Smith MW. Zhou Z. Gao AX. Shimbayashi T. Snyder SA. Org. Lett. 2017; 19: 1004
    • 2u Xiao T. Chen Z. Deng L. Zhang D. Liu X. Song H. Qin Y. Chem. Commun. 2017; 53: 12665
    • 2v Chen Z.-T. Xiao T. Tang P. Zhang D. Qin Y. Tetrahedron 2018; 74: 1129

    • ; for aspidodasycarpine and lonicerine, see:
    • 2w Li Y. Zhu S. Li A. J. Am. Chem. Soc. 2016; 138: 3982

    • ; for scholarisine K and alstolactine A, see:
    • 2x Wang D. Hou M. Ji Y. Gao S. Org. Lett. 2017; 19: 1922

      For the total synthesis of minfiensine, see:
    • 3a Dounary AB. Overman LE. Wrobleski AD. J. Am. Chem. Soc. 2005; 127: 10186
    • 3b Dounary AB. Humphreys PG. Overman LE. Wrobleski AD. J. Am. Chem. Soc. 2008; 130: 5368
    • 3c Shen L. Zhang M. Wu Y. Qin Y. Angew. Chem. Int. Ed. 2008; 47: 3618
    • 3d Jones SB. Simmons B. MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 13606
    • 3e Li G. Padwa A. Org. Lett. 2011; 13: 3767
    • 3f Liu P. Wang J. Zhang J. Qiu F. Org. Lett. 2011; 13: 6426
    • 3g Zhang Z.-X. Chen S.-C. Jiao L. Angew. Chem. Int. Ed. 2016; 55: 8090
    • 3h Ji W. Yao L. Liao X. Org. Lett. 2016; 18: 628
    • 3i Zhang Z.-X. Chen S.-C. Jiao L. Synlett 2017; 28: 2199
    • 3j Du K. Yang H. Guo P. Feng L. Xu G. Zhou Q. Chung LM. Tang W. Chem. Sci. 2017; 8: 6247
  • 4 Yu Y. Li G. Jiang L. Zu L. Angew. Chem. Int. Ed. 2015; 54: 12627
  • 5 For a recent review, see: Yu Y. Li G. Zu L. Synlett 2016; 27: 1303 ; and references therein
  • 6 The alkene 15 later turned out also to be a substrate for the rearrangement. See Section 4.
  • 7 Yao X. Xie X. Wang C. Zu L. Org. Lett. 2015; 17: 4356
  • 8 Jiang L. Yu Y. Li G. Zu L. Chem. Asian J. 2016; 11: 2838
  • 9 Yu Y. Li J. Jiang L. Zhang J.-R. Zu L. Angew. Chem. Int. Ed. 2017; 56: 9217
  • 10 Massiot G. Thépenier P. Jacquier M. Le Men-Olivier L. Delaude C. Heterocycles 1989; 29: 1435
  • 11 For the total synthesis of grandilodine B using indoxyl as the starting material by our group: Wang C. Wang Z. Xie X. Yao X. Li G. Zu L. Org. Lett. 2017; 19: 1828
  • 12 Li L. Yang T. Liu Y. Liu J. Li M. Wang Y. Yang S. Zou Q. Li G. Org. Lett. 2012; 14: 3450
  • 13 Li G. Xie X. Zu L. Angew. Chem. Int. Ed. 2016; 55: 10483
  • 14 Xie X. Wei B. Li G. Zu L. Org. Lett. 2017; 19: 5430
  • 15 Honda T. Heterocycles 2011; 83: 1
  • 16 Subhadhirasakul S. Takayama H. Miyabe Y. Aimi N. Ponglux D. Sakai S. Chem. Pharm. Bull. 1994; 42: 2645
    • 17a Schnoes HK. Biemann K. Mokry J. Kompis I. Chatterjee A. Ganguli G. J. Org. Chem. 1966; 31: 1641
    • 17b Ahmad Y. Fatima K. Atta-ur-Rahman Occolowitz JL. Solheim BA. Clardy J. Garnick RL. Le Quesne PW. J. Am. Chem. Soc. 1977; 99: 1943
    • 17c Zhang L. Zhang C.-J. Zhang D.-B. Wen J. Zhao X.-W. Li Y. Gao K. Tetrahedron Lett. 2014; 55: 1815
  • 18 The mechanism involving the acylium ion was originally proposed by us, but other possibilities, for example, via a three-membered hemiketal intermediate (NH addition to the ketone) cannot be ruled out.

    • For its isolation, see:
    • 19a Randriambola L. Quirion JC. Kan-Fan C. Husson HP. Tetrahedron Lett. 1987; 28: 2123
    • 19b Hashimoto C. Husson H.-P. Tetrahedron Lett. 1988; 29: 4563

      For racemic total syntheses of goniomitine, see:
    • 20a Morales CL. Pagenkopf BL. Org. Lett. 2008; 10: 157
    • 20b De Simone F. Gertsch J. Waser J. Angew. Chem. Int. Ed. 2010; 49: 5767
    • 20c Jiao L. Herdtweck E. Bach T. J. Am. Chem. Soc. 2012; 134: 14563
    • 20d Xu Z. Wang Q. Zhu J. Angew. Chem. Int. Ed. 2013; 52: 3272
    • 20e Wagnières O. Xu Z. Wang Q. Zhu J. J. Am. Chem. Soc. 2014; 136: 15102
    • 20f Zhou B. Du J. Yang Y. Li Y. Chem. Eur. J. 2014; 20: 12768
    • 20g Vellucci JK. Beaudry CM. Org. Lett. 2015; 17: 4558

    • For asymmetric total syntheses of goniomitine, see:
    • 20h Takano S. Sato T. Inomata K. Ogasawara K. J. Chem. Soc., Chem. Commun. 1991; 462
    • 20i Mizutani M. Inagaki F. Nakanishi T. Yanagihara C. Tamai I. Mukai C. Org. Lett. 2011; 13: 1796
    • 20j Zhou S. Jia Y. Org. Lett. 2014; 16: 3416
    • 20k Pritchett BP. Kikuchi J. Numajiri Y. Stoltz BM. Angew. Chem. Int. Ed. 2016; 55: 13529
  • 21 Li H. Cheng P. Jiang L. Yang J. Zu L. Angew. Chem. Int. Ed. 2017; 56: 2754