Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(08): 1008-1013
DOI: 10.1055/s-0036-1591560
DOI: 10.1055/s-0036-1591560
account
Skeletal Rearrangements as Strategies for the Total Syntheses of Indole Alkaloids
The authors are grateful to National Natural Science Foundation of China (21302107, 21672123) for financial support.
Further Information
Publication History
Received: 13.0 2.2018
Accepted after revision: 10 March 2018
Publication Date:
04 April 2018 (online)
Dedicated to Professor Neil K. Garg for leading L. Zu into the field of total synthesis
Abstract
In this account, we summarize our recent efforts in the total syntheses of several indole alkaloids, including minfiensine, calophyline A, deformylcorymine, strictamine, and goniomitine. Our central theme is to utilize skeletal rearrangements as key strategies for generating complex structures.
1 Introduction
2 The Development of an Aza-Pinacol Rearrangement
3 Applications of Aza-Pinacol Rearrangements in Total Syntheses
4 Strategy Extension: The Total Synthesis of Goniomitine
5 Conclusion
-
References
- 1a Ramirez A. Garcia-Rubio S. Curr. Med. Chem. 2003; 10: 1891
- 1b Zhang D. Song H. Qin Y. Acc. Chem. Res. 2011; 44: 447
- 1c Eckermann R. Gaich T. Synthesis 2013; 45: 2813
- 1d Smith JM. Moreno J. Boal BW. Garg NK. Angew. Chem. Int. Ed. 2015; 54: 400
- 1e Zi W. Zuo Z. Ma D. Acc. Chem. Res. 2015; 48: 702
- 1f Susick RB. Morrill LA. Picazo E. Garg NK. Synlett 2017; 28: 1
- 1g Wang C. Zhang S. Wang Y. Huang S. Hong R. Org. Chem. Front. 2018; 5: 447
- 2a Zhang M. Huang X. Shen L. Qin Y. J. Am. Chem. Soc. 2009; 131: 6013
- 2b Zi W. Xie W. Ma D. J. Am. Chem. Soc. 2012; 134: 9126
- 2c Horning BD. MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 6442
- 2d Zu L. Boal BW. Garg NK. J. Am. Chem. Soc. 2011; 133: 8877
- 2e Li Q. Li G. Ma S. Feng P. Shi Y. Org. Lett. 2013; 15: 2601
- 2f Teng M. Zi W. Ma D. Angew. Chem. Int. Ed. 2014; 53: 1814
- 2g Ren W. Wang Q. Zhu J. Angew. Chem. Int. Ed. 2014; 53: 1818
- 2h Jiang S. Zeng X. Liang X. Lei T. Wei K. Yang Y. Angew. Chem. Int. Ed. 2016; 55: 4044
- 2i Wang T. Duan X. Zhao H. Zhai S. Tao C. Wang H. Li Y. Cheng B. Zhai H. Org. Lett. 2017; 19: 1650
- 2j Adams GL. Carroll PJ. Smith III AB. J. Am. Chem. Soc. 2012; 134: 4037
- 2k Adams GL. Carroll PJ. Smith III AB. J. Am. Chem. Soc. 2013; 135: 519
- 2l Smith MW. Snyder SA. J. Am. Chem. Soc. 2013; 135: 12964
- 2m Smith JM. Moreno J. Boal BW. Garg NK. J. Am. Chem. Soc. 2014; 136: 4504
- 2n Smith JM. Moreno J. Boal BW. Garg NK. J. Org. Chem. 2015; 80: 8954
- 2o Moreno J. Picazo E. Morrill LA. Smith JM. Garg NK. J. Am. Chem. Soc. 2016; 138: 1162
- 2p Ren W. Wang Q. Zhu J. Angew. Chem. Int. Ed. 2016; 55: 3500
- 2q Nishiyama D. Ohara A. Chiba H. Kumagai H. Oishi S. Fujii N. Ohno H. Org. Lett. 2016; 18: 1670
- 2r Eckermann R. Breunig M. Gaich T. Chem. Commun. 2016; 52: 11363
- 2s Eckermann R. Breunig M. Gaich T. Chem. Eur. J. 2017; 23: 3938
- 2t Smith MW. Zhou Z. Gao AX. Shimbayashi T. Snyder SA. Org. Lett. 2017; 19: 1004
- 2u Xiao T. Chen Z. Deng L. Zhang D. Liu X. Song H. Qin Y. Chem. Commun. 2017; 53: 12665
- 2v Chen Z.-T. Xiao T. Tang P. Zhang D. Qin Y. Tetrahedron 2018; 74: 1129
- 2w Li Y. Zhu S. Li A. J. Am. Chem. Soc. 2016; 138: 3982
- 2x Wang D. Hou M. Ji Y. Gao S. Org. Lett. 2017; 19: 1922
- 3a Dounary AB. Overman LE. Wrobleski AD. J. Am. Chem. Soc. 2005; 127: 10186
- 3b Dounary AB. Humphreys PG. Overman LE. Wrobleski AD. J. Am. Chem. Soc. 2008; 130: 5368
- 3c Shen L. Zhang M. Wu Y. Qin Y. Angew. Chem. Int. Ed. 2008; 47: 3618
- 3d Jones SB. Simmons B. MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 13606
- 3e Li G. Padwa A. Org. Lett. 2011; 13: 3767
- 3f Liu P. Wang J. Zhang J. Qiu F. Org. Lett. 2011; 13: 6426
- 3g Zhang Z.-X. Chen S.-C. Jiao L. Angew. Chem. Int. Ed. 2016; 55: 8090
- 3h Ji W. Yao L. Liao X. Org. Lett. 2016; 18: 628
- 3i Zhang Z.-X. Chen S.-C. Jiao L. Synlett 2017; 28: 2199
- 3j Du K. Yang H. Guo P. Feng L. Xu G. Zhou Q. Chung LM. Tang W. Chem. Sci. 2017; 8: 6247
- 4 Yu Y. Li G. Jiang L. Zu L. Angew. Chem. Int. Ed. 2015; 54: 12627
- 5 For a recent review, see: Yu Y. Li G. Zu L. Synlett 2016; 27: 1303 ; and references therein
- 6 The alkene 15 later turned out also to be a substrate for the rearrangement. See Section 4.
- 7 Yao X. Xie X. Wang C. Zu L. Org. Lett. 2015; 17: 4356
- 8 Jiang L. Yu Y. Li G. Zu L. Chem. Asian J. 2016; 11: 2838
- 9 Yu Y. Li J. Jiang L. Zhang J.-R. Zu L. Angew. Chem. Int. Ed. 2017; 56: 9217
- 10 Massiot G. Thépenier P. Jacquier M. Le Men-Olivier L. Delaude C. Heterocycles 1989; 29: 1435
- 11 For the total synthesis of grandilodine B using indoxyl as the starting material by our group: Wang C. Wang Z. Xie X. Yao X. Li G. Zu L. Org. Lett. 2017; 19: 1828
- 12 Li L. Yang T. Liu Y. Liu J. Li M. Wang Y. Yang S. Zou Q. Li G. Org. Lett. 2012; 14: 3450
- 13 Li G. Xie X. Zu L. Angew. Chem. Int. Ed. 2016; 55: 10483
- 14 Xie X. Wei B. Li G. Zu L. Org. Lett. 2017; 19: 5430
- 15 Honda T. Heterocycles 2011; 83: 1
- 16 Subhadhirasakul S. Takayama H. Miyabe Y. Aimi N. Ponglux D. Sakai S. Chem. Pharm. Bull. 1994; 42: 2645
- 17a Schnoes HK. Biemann K. Mokry J. Kompis I. Chatterjee A. Ganguli G. J. Org. Chem. 1966; 31: 1641
- 17b Ahmad Y. Fatima K. Atta-ur-Rahman Occolowitz JL. Solheim BA. Clardy J. Garnick RL. Le Quesne PW. J. Am. Chem. Soc. 1977; 99: 1943
- 17c Zhang L. Zhang C.-J. Zhang D.-B. Wen J. Zhao X.-W. Li Y. Gao K. Tetrahedron Lett. 2014; 55: 1815
- 18 The mechanism involving the acylium ion was originally proposed by us, but other possibilities, for example, via a three-membered hemiketal intermediate (NH addition to the ketone) cannot be ruled out.
- 19a Randriambola L. Quirion JC. Kan-Fan C. Husson HP. Tetrahedron Lett. 1987; 28: 2123
- 19b Hashimoto C. Husson H.-P. Tetrahedron Lett. 1988; 29: 4563
- 20a Morales CL. Pagenkopf BL. Org. Lett. 2008; 10: 157
- 20b De Simone F. Gertsch J. Waser J. Angew. Chem. Int. Ed. 2010; 49: 5767
- 20c Jiao L. Herdtweck E. Bach T. J. Am. Chem. Soc. 2012; 134: 14563
- 20d Xu Z. Wang Q. Zhu J. Angew. Chem. Int. Ed. 2013; 52: 3272
- 20e Wagnières O. Xu Z. Wang Q. Zhu J. J. Am. Chem. Soc. 2014; 136: 15102
- 20f Zhou B. Du J. Yang Y. Li Y. Chem. Eur. J. 2014; 20: 12768
- 20g Vellucci JK. Beaudry CM. Org. Lett. 2015; 17: 4558
- 20h Takano S. Sato T. Inomata K. Ogasawara K. J. Chem. Soc., Chem. Commun. 1991; 462
- 20i Mizutani M. Inagaki F. Nakanishi T. Yanagihara C. Tamai I. Mukai C. Org. Lett. 2011; 13: 1796
- 20j Zhou S. Jia Y. Org. Lett. 2014; 16: 3416
- 20k Pritchett BP. Kikuchi J. Numajiri Y. Stoltz BM. Angew. Chem. Int. Ed. 2016; 55: 13529
- 21 Li H. Cheng P. Jiang L. Yang J. Zu L. Angew. Chem. Int. Ed. 2017; 56: 2754
For selected reviews and accounts of akuammiline natural products, see:
Total syntheses of akuammiline natural products; for vincorine, see:
for aspidophylline A, see:
;for scholarisine A, see:
; for picrinine, see:
; for strictamine, see:
; for aspidodasycarpine and lonicerine, see:
; for scholarisine K and alstolactine A, see:
For the total synthesis of minfiensine, see:
For its isolation, see:
For racemic total syntheses of goniomitine, see:
For asymmetric total syntheses of goniomitine, see: