Synlett 2018; 29(04): 477-482
DOI: 10.1055/s-0036-1591725
letter
© Georg Thieme Verlag Stuttgart · New York

2-Phenyl-2,3-dihydrobenzo[d]thiazole: A Mild, Efficient, and Highly Active in situ Generated Chemoselective Reducing Agent for the One-Pot Synthesis of 5-Monoalkylbarbiturates in Water

Subarna Jyoti Kalita
Department of Chemistry, University of Gauhati, G. B. Nagar, Guwahati 781014, Assam, India   Email: dcdeka@rediffmail.com
,
Dibakar Chandra Deka*
Department of Chemistry, University of Gauhati, G. B. Nagar, Guwahati 781014, Assam, India   Email: dcdeka@rediffmail.com
› Author Affiliations
Further Information

Publication History

Received: 15 October 2017

Accepted: 24 October 2017

Publication Date:
28 November 2017 (online)


Abstract

A metal- and catalyst-free reductive alkylation protocol for the one-pot synthesis of 5-monoalkylbarbiturates from barbituric acids and aldehydes using the in situ generated chemoselective reducing agent 2-phenyl-2,3-dihydrobenzo[d]thiazole from 2-aminothiophenol and benzaldehyde is described. The notable advantages of the protocol are operational simplicity, mild reaction conditions, high yield, short reaction time, and simple workup and purification process which make it highly attractive.

Supporting Information

 
  • References and Notes

    • 1a Shonle H. Moment A. J. Am. Chem. Soc. 1923; 45: 243
    • 1b Nielsen C. Higgins JA. Spruth HC. J. Pharmacol. Exp. Ther. 1925; 26: 371
    • 2a Kliethermes CL. Metten P. Belknap JK. Buck KJ. Crabbe JC. Brain Res. 2004; 1009: 17
    • 2b Morgan WW. Adv. Alcohol Subst. Abuse 1990; 9: 67
  • 3 Ashour OM. Naguib FN. Khalifa MM. AbdelRaheem MH. Panzica RP. el Kouni MH. Cancer Res. 1995; 55: 1092
    • 4a Andrews PR. Jones GP. Lodge D. Eur. J. Pharmacol. 1979; 55: 115
    • 4b Mcdonald RL. Barker JL. Neurology 1979; 4: 432
    • 4c Andrews PR. Jones GP. Poulton DB. Eur. J. Pharmacol. 1982; 79: 61
    • 4d Andrews PR. Mark LC. Winkler DA. Jones GP. J. Med. Chem. 1983; 26: 1223
    • 4e Archana Srivastava VK. Kumar A. Bioorg. Med. Chem. 2004; 12: 1257
  • 5 Gomez GG. Hutchison RB. Kruse CA. Cancer Treat. Rev. 2001; 27: 375
    • 6a Glover A. Chun HG. Kleinman LM. Cooney DA. Plowman J. Grieshaber CK. Malspeis L. Leyland-Jones B. Invest. New Drugs 1987; 5: 137
    • 6b Ziarani GM. Alealia F. Lashgari N. RSC Adv. 2016; 6: 50895
    • 7a Miller AA. Bundy GL. Mott JE. Skepner JE. Boyle TP. Harris DW. Hromockyj AE. Marotti KR. Zurenko GE. Munzner JB. Sweeney MT. Bammert GF. Hamel JC. Ford CW. Zhong W.-Z. Graber DR. Martin GE. Han F. Dolak LA. Seest EP. Ruble JC. Kamilar GM. Palmer JR. Banitt LS. Hurd AR. Barbachyn MR. Antimicrob. Agents Chemother. 2008; 52: 2806
    • 7b Ruble JC. Hurd AR. Johnson TA. Sherry DA. Barbachyn MR. Toogood PL. Bundy GL. Graber DR. Kamilar GM. J. Am. Chem. Soc. 2009; 131: 3991
    • 8a Brandstetter H. Grams F. Glitz D. Lang A. Huber R. Bode W. Krell H.-W. Engh RA. J. Biol. Chem. 2001; 276: 17405
    • 8b Fisher JF. Mobashery S. Cancer Metastasis Rev. 2006; 25: 115
    • 8c Fridman R. Cancer Metastasis Rev. 2006; 25: 7
    • 8d Faust A. Waschkau B. Waldeck J. Höltke C. Breyholz H.-J. Wagner S. Kopka K. Heindel W. Schäfers M. Bremer C. Bioconjugate Chem. 2008; 19: 1001
    • 8e Wang J. O'Sullivan S. Harmon S. Keaveny R. Radomski MW. Medina C. Gilmer JF. J. Med. Chem. 2012; 55: 2154
  • 9 Xia G. Benmohamed R. Kim J. Arvanites AC. Morimoto RI. Ferrante RJ. Kirsch DR. Silverman RB. J. Med. Chem. 2011; 54: 2409
  • 10 Calamai E. Dall’Angelo S. Koss D. Domarkas J. McCarthy TJ. Mingarelli M. Riedel G. Schweiger LF. Welch A. Platt B. Zanda M. Chem. Commun. 2013; 792
    • 11a Bartzatt RJ. J. Pharm. Biomed. Anal. 2002; 29: 909
    • 11b Lee H. Berezin MY. Gou K. Kao J. Achilefu S. Org. Lett. 2009; 11: 29
    • 12a Ivanova BB. Spitellar M. Cryst. Growth Des. 2010; 10: 2470
    • 12b Andreu R. Garín J. Orduna J. Alcalá R. Villacampa B. Org. Lett. 2003; 5: 3143
    • 13a Prins LJ. Jolliffe KA. Hulst R. Timmerman P. Reinhoudt DN. J. Am. Chem. Soc. 2000; 122: 3617
    • 13b Timmerman P. Prins LJ. Eur. J. Org. Chem. 2001; 3191
    • 13c McClenaghan ND. Absalon C. Bassani DM. J. Am. Chem. Soc. 2003; 125: 13004
    • 13d Yagai S. Karatsu T. Kitamura A. Langmuir 2005; 21: 11048
    • 14a Devi I. Bhuyan PJ. Tetrahedron Lett. 2005; 46: 5727
    • 14b Weygand–Hilgetag Preparative Organic Chemistry . Hilgetag G. Martini A. Wiley; New York: 1972: 493
    • 15a Zalukaev LP. Trostyanetskaya VL. Chem. Heterocycl. Compd. 1971; 7: 781; Khim. Geterotsikl. Soedin. 1971, 6, 836
    • 15b Volonterio A. Zanda M. Org. Lett. 2007; 9: 841
  • 16 Jursic BS. Neumann DM. Tetrahedron Lett. 2001; 42: 4103
  • 17 Jursic BS. Stevens ED. Tetrahedron Lett. 2003; 44: 2203
  • 18 Denmark SE. Ibrahim MY. S. Ambrosi A. ACS Catal. 2017; 7: 613
    • 19a Cui H. Ruda GF. Carrero-Lérida J. Ruiz-Pérez a LM. Gilbert IH. González-Pacanowska D. Eur. J. Med. Chem. 2010; 45: 5140
    • 19b Vieira AA. Gomes NM. Matheus ME. Fernandes PD. Figueroa-Villar JD. J. Braz. Chem. Soc. 2011; 22: 364
    • 19c Figuero a Villar JD. Vieira A. Marinho B. Souza L. Fernandes P. Med. Chem. Commun. 2015; 6: 1427
    • 20a Ramachary DB. Kishor M. Ramakumar K. Tetrahedron Lett. 2006; 47: 651
    • 20b Ramachary DB. Kishor M. Reddy YV. Eur. J. Org. Chem. 2008; 975
  • 21 Baruah B. Naidu PS. Borah P. Bhuyan PJ. Mol Diversity 2012; 16: 291
  • 22 Ramachary DB. Reddy GB. Org. Biomol. Chem. 2006; 4: 4463
  • 23 Fillion E. Kavoosi A. Nguyen K. Ieritano C. Chem. Commun. 2016; 52: 12813
  • 24 General Procedure for the Synthesis of 5-Monoalkylbarbiturates 4aa–cp A mixture of barbituric acid 1 (1 mmol) and aldehyde 2 (1 mmol) was refluxed in 5 mL of water for an appropriate time until the generation of 5-arylidenebarbituric acid as indicated by TLC. Next 2-aminothiophenol (3, 1 mmol) and benzaldehyde (2a, 1 mmol) were added, and the reaction mixture was further refluxed for an appropriate time. On completion of the reaction as indicated by TLC the reaction mixture was allowed to cool to room temperature and was extracted with EtOAc (3 × 10 mL). After drying with anhydrous Na2SO4 and evaporation under reduced pressure, the crude product was purified suitably either by recrystallization from a DCM/EtOH (1:1) solvent mixture or column chromatography on silica gel using EtOAc/hexane (2:8) as the eluent to afford 5-monoalkylbarbiturate 4. 5-Benzylpyrimidine-2,4,6(1H,3H,5H)-trione (4aa) White solid; 0.191 g (88%); mp 209–210 °C. 1H NMR (300 MHz, DMSO-d 6): δ = 3.22–3.24 (m, 2 H), 3.87–3.90 (m, 1 H), 7.05–7.24 (m, 5 H), 11.17 (s, 2 H) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 33.3, 49.3, 126.7, 128.3, 128.9, 137.4, 150.6, 170.0 ppm. IR (KBr): νmax = 3234, 2939, 1716, 1681, 1581 cm–1. ESI-MS: m/z calcd for C11H10N2O3 +: 218.07; found: 219.0 [M + H]+. Anal. Calcd (%) for C11H10N2O3: C, 60.55; H, 4.62; N, 12.84. Found: C, 60.70; H, 4.46; N, 13.02. 5-Cinnamyl-6-hydroxypyrimidine-2,4(1H,3H)-dione (4ah) Pale yellow sticky solid; 0.195 g (80%). 1H NMR (300 MHz, DMSO-d 6): δ = 2.68 (d, 2 H, J = 7.2 Hz), 5.99–6.09 (m, 1 H), 6.27 (s, 1 H), 6.41 (d, 1 H, J = 15.9 Hz), 7.19–7.31 (m, 5 H), 11.28 (s, 2 H) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 43.0, 75.0, 121.5, 126.2, 127.7, 128.4, 128.7, 134.3, 136.5, 150.0, 171.6 ppm. IR (KBr): νmax = 3234, 3030, 2974, 1734, 1680, 1616, 1560 cm–1. ESI-MS: m/z calcd for C13H12N2O3 +: 244.08; found: 245.0 [M + H]+. Anal. Calcd (%) for C13H12N2O3: C, 63.93; H, 4.95; N, 11.47. Found: C, 64.08; H, 5.07; 11.29. 1,3-Dimethyl-5-(thiophen-2-ylmethyl)pyrimidine-2,4,6(1H,3H,5H)-trione (4cn) Pale yellow solid; 0.226 g (90%); mp 118–119 °C. 1H NMR (300 MHz, CDCl3): δ = 3.20 (s, 6 H), 3.72 (s, 3 H), 6.76–6.77 (m, 1 H), 6.85–6.88 (m, 1 H), 7.12–7.13 (m, 1 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 28.4, 30.7, 50.4, 125.2, 127.0, 127.2, 136.4, 151.0, 167.7 ppm. IR (KBr): νmax = 2976, 1672, 1589 cm–1. ESI-MS: m/z calcd for C11H12N2O3S+: 252.06; found: 253.0 [M + H]+. Anal. Calcd (%) for C11H12N2O3S: C, 52.37; H, 4.79; N, 11.10. Found: C, 52.22; H, 4.94; 10.98. 1,3-Dimethyl-5-(naphthalen-1-ylmethyl)pyrimidine-2,4,6(1H,3H,5H)-trione (4cp) White solid; 0.266 g (90%); mp 153–154 °C. 1H NMR (300 MHz, CDCl3): δ = 2.92 (s, 6 H), 3.91 (s, 3 H), 7.22 (t, 1 H, J = 6.9 Hz), 7.33 (t, 1 H, J = 7.8 Hz), 7.47–7.53 (m, 2 H), 7.75 (d, 1 H, J = 8.4 Hz), 7.82 (d, 1 H, J = 8.1 Hz), 7.94 (d, 1 H, J = 8.4 Hz) ppm. 13C NMR (75 MHz, CDCl3): δ = 28.1, 34.7, 50.8, 123.2, 124.9, 125.8, 126.3, 127.7, 128.6, 128.9, 131.4, 131.5, 133.7, 150.9, 168.6 ppm. IR (KBr): νmax = 3953, 1695, 1658, 1560 cm–1. ESI-MS: m/z calcd for C17H16N2O3 +: 296.12; found: 297.1 [M + H]+. Anal. Calcd (%) for C17H16N2O3: C, 68.91; H, 5.44; N, 9.45. Found: C, 68.76; H, 5.60; N, 9.63.
    • 25a Kalita SJ. Mecadon H. Deka DC. RSC Adv. 2014; 4: 10402
    • 25b Kalita SJ. Mecadon H. Deka DC. RSC Adv. 2014; 4: 32207
    • 25c Kalita SJ. Mecadon H. Deka DC. Tetrahedron Lett. 2015; 56: 731
    • 25d Kalita SJ. Saikia N. Deka DC. Mecadon H. Res. Chem. Intermed. 2016; 42: 6863
    • 25e Kalita SJ. Deka DC. Mecadon H. RSC Adv. 2016; 6: 91320
    • 25f Kalita SJ. Bayan R. Devi J. Brahma S. Mecadon H. Deka DC. Tetrahedron Lett. 2017; 58: 566
    • 25g Kalita SJ. Das B. Deka DC. SynOpen 2017; 1: 45
    • 25h Kalita SJ. Das B. Deka DC. ChemistrySelect 2017; 2: 5701
  • 26 Chikashita H. Miyazaki M. Itoh K. Synthesis 1984; 308
  • 27 Zhu C. Akiyama T. Org. Lett. 2009; 11: 4180
    • 28a Fringuelli F. Piermatti O. Pizzo F. Vaccaro L. Eur. J. Org. Chem. 2001; 439
    • 28b Butler RN. Cunningham WJ. Coyne AG. Burke LA. J. Am. Chem. Soc. 2004; 126: 11923
    • 28c Chanda A. Fokin VV. Chem. Rev. 2009; 109: 725
    • 28d Simon M.-O. Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
    • 28e Osuna S. Kim S. Bollot G. Houk KN. Eur. J. Org. Chem. 2013; 2823
    • 28f Norcott P. McErlean CS. P. Org. Biomol. Chem. 2015; 13: 6866
    • 28g Ayub K. Ludwig R. RSC Adv. 2016; 6: 23448
    • 28h Chougala BM. Samundeeswari S. Holiyachi M. Shastri LA. ChemistrySelect 2017; 2: 1290
  • 29 CCDC 1574477 contains the supplementary crystallographic data for compound 4cn. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.