RSS-Feed abonnieren
DOI: 10.1055/s-0036-1591728
Regioselective Syntheses of Fluorinated Cyclopentanone Derivatives: Ring Construction Strategy Using Transition-Metal–Difluorocarbene Complexes and Free Difluorocarbene
This work was supported by JSPS KAKENHI Grant Numbers JP16H01002 (J.I.), JP16K13943 (J.I.), JP15K05414 (K.F.).Publikationsverlauf
Received: 18. Oktober 2017
Accepted: 26. Oktober 2017
Publikationsdatum:
11. Dezember 2017 (online)
Abstract
The syntheses of fluorinated cyclopentanone derivatives, which have pharmaceutical and agrochemical importance are reported. The catalytic reaction of copper(I) and nickel(II) difluorocarbenes with silyl dienol ethers afforded 4,4-difluoro- and 5,5-difluorocyclopent-1-en-1-yl silyl ethers, respectively. The fluorine-directed and -activated Nazarov cyclization of 1-fluorovinyl vinyl ketones, which were prepared from silyl dienol ethers and free difluorocarbene, proceeded efficiently to afford 2-fluorocyclopent-2-en-1-ones. Moreover, fluorine-directed Nazarov cyclizations of 2,2-difluorovinyl vinyl ketones and 1-(trifluoromethyl)vinyl vinyl ketones afforded 3-fluorocyclopent-2-en-1-ones and 5-(trifluoromethyl)cyclopent-2-en-1-ones, respectively. In addition, derivatization of ring-difluorinated products also provided 3-fluorocyclopent-2-en-1-ones.
Key words
fluorine - carbene complexes - carbocation - difluorocarbene - Nazarov cyclization - cyclopentanones - organocatalystsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591728.
- Supporting Information
-
References
- 2a Wang J. Sánchez-Roselló M. Aceña JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
- 2b Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 2c Uneyama K. Organofluorine Chemistry . Blackwell Publishing; Oxford: 2006: 206-222
- 3 Fäh C. Hardegger LA. Baitsch L. Schweizer WB. Meyer S. Bur D. Diederich F. Org. Biomol. Chem. 2009; 7: 3947
- 4 Iguchi K. Kaneta S. Tsune C. Yamada Y. Chem. Pharm. Bull. 1989; 37: 1173
- 5a Takahashi S. Domon Y. Kitano Y. Shinozuka T. Patent WO 2014/142221 A1, 2014
- 5b Meegalla SK. Doller D. Liu R. Sha D. Lee Y. Soll RM. Wisnewski N. Silver GM. Dhanoa D. Bioorg. Med. Chem. Lett. 2006; 16: 1702
- 6a Pravst I. Zupan M. Stavber S. Synthesis 2005; 3140
- 6b Baudoux J. Cahard D. Org. React. 2007; 69: 347
- 7a Doyle MP. McKervey MA. Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: from Cyclopropanes to Ylides. Wiley; New York: 1998
- 7b Dorwald FZ. Metal Carbenes in Organic Synthesis . Wiley-VCH; Weinheim: 1999
- 7c Dötz KH. Metal Carbenes in Organic Synthesis . Springer; Berlin: 2004
- 7d Vougioukalakis GC. Grubbs RH. Chem. Rev. 2010; 110: 1746
- 8a Brahms DL. S. Dailey WP. Chem. Rev. 1996; 96: 1585
- 8b Dolbier WR. Jr, Battiste MA. Chem. Rev. 2003; 103: 1071
- 8c Ni C. Hu J. Synthesis 2014; 46: 842
- 9a Brothers PJ. Roper WR. Chem. Rev. 1988; 88: 1293
- 9b Clark GR. Hoskins SV. Roper WR. J. Organomet. Chem. 1982; 234: C9
- 9c Clark GR. Hoskins SV. Jones TC. Roper WR. J. Chem. Soc., Chem. Commun. 1983; 719
- 9d Koola JD. Roddick DM. Organometallics 1991; 10: 591
- 9e Huang D. Koren PR. Folting K. Davidson ER. Caulton KG. J. Am. Chem. Soc. 2000; 122: 8916
- 9f Hughes RP. Laritchev RB. Yuan J. Golen JA. Rucker AN. Rheingold AL. J. Am. Chem. Soc. 2005; 127: 15020
- 9g Goodman J. Grushin VV. Larichev RB. Macgregor SA. Marshall WJ. Roe DC. J. Am. Chem. Soc. 2009; 131: 4236
- 9h Martínez-Salvador S. Menjón B. Forniés J. Martín A. Usón I. Angew. Chem. Int. Ed. 2010; 49: 4286
- 9i Lee GM. Harrison DJ. Korobkov I. Baker RT. Chem. Commun. 2014; 50: 1128
- 9j Harrison DJ. Daniels AL. Korobkov I. Baker RT. Organometallics 2015; 34: 5683
- 10a Trnka TM. Day MW. Grubbs RH. Angew. Chem. Int. Ed. 2001; 40: 3441
- 10b Takahira Y. Morizawa Y. J. Am. Chem. Soc. 2015; 137: 7031
- 10c Zheng J. Lin J.-H. Yu L.-Y. Wei Y. Zheng X. Xiao J.-C. Org. Lett. 2015; 17: 6150
- 10d Feng Z. Min Q.-Q. Zhang X. Org. Lett. 2016; 18: 44
- 10e Goswami M. de Bruin B. Dzik WI. Chem. Commun. 2017; 53: 4382
- 10f Feng Z. Min Q.-Q. Fu X.-P. An L. Zhang X. Nat. Chem. 2017; 9: 918
- 10g Deng X.-Y. Lin J.-H. Xiao J.-C. Org. Lett. 2016; 18: 4384
- 11a Miller TG. Thanassi JW. J. Org. Chem. 1960; 25: 2009
- 11b Shen TY. Lucas S. Sarett LH. Tetrahedron Lett. 1961; 2: 43
- 12a Birchall JM. Cross GW. Haszeldine RN. Proc. Chem. Soc. 1960; 81
- 12b Knox LH. Velarde E. Berger S. Cuadriello D. Landis PW. Cross AD. J. Am. Chem. Soc. 1963; 85: 1851
- 12c Beard C. Dyson NH. Fried JH. Tetrahedron Lett. 1966; 7: 3281
- 13a Seyferth D. Hopper SP. Darragh KV. J. Am. Chem. Soc. 1969; 91: 6536
- 13b Seyferth D. Hopper SP. J. Org. Chem. 1972; 37: 4070
- 14a Oshiro K. Morimoto Y. Amii H. Synthesis 2010; 2080
- 14b Kageshima Y. Suzuki C. Oshiro K. Amii H. Synlett 2015; 26: 63
- 14c Wang F. Luo T. Hu J. Wang Y. Krishnan HS. Jog PV. Ganesh SK. Prakash GK. S. Olah GA. Angew. Chem. Int. Ed. 2011; 50: 7153
- 14d Krishnamoorthy S. Kothandaraman J. Saldana J. Prakash GK. S. Eur. J. Org. Chem. 2016; 4965
- 14e Li L. Ni C. Xie Q. Hu M. Wang F. Hu J. Angew. Chem. Int. Ed. 2017; 56: 9971
- 14f Wang F. Zhang W. Zhu J. Li H. Huang K.-W. Hu J. Chem. Commun. 2011; 47: 2411
- 14g Chang J. Song X. Huang W. Zhu D. Wang M. Chem. Commun. 2015; 51: 15362
- 14h Fedorov OV. Kosobokov MD. Levin VV. Struchkova MI. Dilman AD. J. Org. Chem. 2015; 80: 5870
- 14i Kosobokov MD. Levin VV. Struchkova MI. Dilman AD. Org. Lett. 2015; 17: 760
- 14j Zheng J. Lin J.-H. Cai J. Xiao J.-C. Chem. Eur. J. 2013; 19: 15261
- 15 For example, see refs 9b,e,j.
- 16a Gooßen LJ. Rodríguez N. Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
- 16b Rodriguez N. Gooßen LJ. Chem. Soc. Rev. 2011; 40: 5030
- 17 Fuchibe K. Aono T. Hu J. Ichikawa J. Org. Lett. 2016; 18: 4502
- 18a Storm DL. Spencer TA. Tetrahedron Lett. 1967; 1865
- 18b Son S. Fu GC. J. Am. Chem. Soc. 2007; 129: 1046
- 19a Xiao Q. Xia Y. Li H. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2011; 50: 1114
- 19b Hu M. Ni C. Hu J. J. Am Chem. Soc. 2012; 134: 15257
- 19c Xia Y. Zhang Y. Wang J. ACS Catal. 2013; 3: 2586
- 20 Martínez-Montero S. Fernández S. Sanghvi YS. Theodorakis EA. Detorio MA. McBrayer TR. Whitaker T. Schinazi RF. Gotor V. Ferrero M. Bioorg. Med. Chem. 2012; 20: 6885
- 21 Tajima T. Nakajima A. Fuchigami T. J. Org. Chem. 2006; 71: 1436
- 22 Aono T. Sasagawa H. Fuchibe K. Ichikawa J. Org. Lett. 2015; 17: 5736
- 23a Tian F. Kruger V. Bautista O. Duan J.-X. Li A.-R. Dolbier WR. Jr. Chen Q.-Y. Org. Lett. 2000; 2: 563
- 23b Dolbier WR. Jr. Tian F. Duan J.-X. Li A.-R. Ait-Mohand S. Bautista O. Buathong S. Marshall Baker J. Crawford J. Anselme P. Cai XH. Modzelewska A. Koroniak H. Battiste MA. Chen Q.-Y. J. Fluorine Chem. 2004; 125: 459
- 24a Inamoto K. Kuroda J.-i. Hiroya K. Noda Y. Watanabe M. Sakamoto T. Organometallics 2006; 25: 3095
- 24b Inamoto K. Kuroda J.-i. Sakamoto T. Hiroya K. Synthesis 2007; 2853
- 25a Wong HN. C. Hon MY. Tse CW. Yip YC. Tanko J. Hudlicky T. Chem. Rev. 1989; 89: 165
- 25b Baldwin JE. Chem. Rev. 2003; 103: 1197
- 25c Hudlický T. Kutchan TM. Naqvi SM. Org. React. 2004; 33: 247
- 25d Orr D. Percy JM. Harrison ZA. Chem. Sci. 2016; 7: 6369
- 26a Wu S.-H. Yu Q. Acta Chim. Sin. 1989; 7: 253
- 26b Song X. Chang J. Zhu D. Li J. Xu C. Liu Q. Wang M. Org. Lett. 2015; 17: 1712
- 26c Aikawa K. Toya W. Nakamura Y. Mikami K. Org. Lett. 2015; 17: 4996
- 27a Dolbier WR. Jr. Sellers SF. J. Am Chem. Soc. 1982; 104: 2494
- 27b Dolbier WR. Jr. Sellers SF. J. Org. Chem. 1982; 47: 1
- 28 Orr D. Percy JM. Tuttle T. Kennedy AR. Harrison ZA. Chem. Eur. J. 2014; 20: 14305
- 29 Experimental and theoretical studies indicate that the lengths of the C–C bonds distal and proximal to the geminal fluorine substituents in 1,1-difluorocyclopropane are 1.553 and 1.464 Å, respectively, while the length of the C–C bonds in the parent cyclopropane is 1.510 Å.
- 30a Liebman JF. Greenberg A. Chem. Rev. 1976; 76: 311
- 30b Khoury PR. Goddard JD. Tam W. Tetrahedron 2004; 60: 8103
- 31a Fuchibe K. Koseki Y. Sasagawa H. Ichikawa J. Chem. Lett. 2011; 40: 1189
- 31b Fuchibe K. Koseki Y. Aono T. Sasagawa H. Ichikawa J. J. Fluorine Chem. 2012; 133: 52
- 31c Fuchibe K. Bando M. Takayama R. Ichikawa J. J. Fluorine Chem. 2015; 171: 133
- 32 Takayama R. Yamada A. Fuchibe K. Ichikawa J. Org. Lett. 2017; 19: 5050
- 33 Takayama R. Fuchibe K. Ichikawa J. ARKIVOC 2018; (ii): 72
- 34a Song X. Tian S. Zhao Z. Zhu D. Wang M. Org. Lett. 2016; 18: 3414
- 34b Chang J. Xu C. Gao J. Gao F. Zhu D. Wang M. Org. Lett. 2017; 19: 1850
- 35a Harmata M. Chemtracts Org. Chem. 2004; 17: 416
- 35b Pellissier H. Tetrahedron 2005; 61: 6479
- 35c Frontier AJ. Collison C. Tetrahedron 2005; 61: 7577
- 35d West FG. Scadeng O. Wu Y.-K. Frandette RJ. Joy S. In Comprehensive Organic Synthesis . Vol. 5. Knochel P. Molander GA. Elsevier; Oxford: 2014: 827-866
- 35e Simeonov SP. Nunes JP. M. Guerra K. Kurteva VB. Afonso CA. M. Chem. Rev. 2016; 116: 5744
- 36a Denmark SE. Jones TK. J. Am. Chem. Soc. 1982; 104: 2642
- 36b Denmark SE. Habermas KL. Hite GA. Helv. Chim. Acta 1988; 71: 168
- 36c Denmark SE. Wallace MA. Walker CB. J. Org. Chem. 1990; 55: 5543
- 36d Kang K.-T. Kim SS. Lee JC. Sun UJ. S. Tetrahedron Lett. 1992; 33: 3495
- 37 Peel MR. Johnson CR. Tetrahedron Lett. 1986; 27: 5947
- 38a Tius MA. Kwok C.-K. Gu X.-Q. Zhao C. Synth. Commun. 1994; 24: 871
- 38b Casson S. Kocienski P. J. Chem. Soc., Perkin Trans. 1 1994; 1187
- 38c He W. Sun X. Frontier AJ. J. Am. Chem. Soc. 2003; 125: 14278
- 39a Smart BE. In Organofluorine Chemistry, Principles and Commercial Application . Banks RE. Smart BE. Tatlow J. C.; Plenum Press; New York: 1994: 57-88
- 39b Uneyama K. Organofluorine Chemistry . Blackwell Publishing; Oxford: 2006: 1-100
- 39c Bégué J.-P. Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; Hoboken: 2008: 1-22
- 40a Ichikawa J. Yokota M. Kudo T. Umezaki S. Angew. Chem. Int. Ed. 2008; 47: 4870
- 40b Fuchibe K. Jyono H. Fujiwara M. Kudo T. Yokota M. Ichikawa J. Chem. Eur. J. 2011; 11: 12175
- 40c Fuchibe K. Mayumi Y. Zhao N. Watanabe S. Yokota M. Ichikawa J. Angew. Chem. Int. Ed. 2013; 52: 7825
- 40d Fuchibe K. Mayumi Y. Yokota M. Aihara H. Ichikawa J. Bull. Chem. Soc. Jpn. 2014; 87: 942
- 40e Fuchibe K. Morikawa T. Ueda R. Okauchi T. Ichikawa J. J. Fluorine Chem. 2015; 179: 106
- 40f Fuchibe K. Morikawa T. Shigeno K. Fujita T. Ichikawa J. Org. Lett. 2015; 17: 1126
- 40g Suzuki N. Fujita T. Ichikawa J. Org. Lett. 2015; 17: 4984
- 40h Suzuki N. Fujita T. Amsharov KY. Ichikawa J. Chem. Commun. 2016; 52: 12948
- 40i Fuchibe K. Hatta H. Oh K. Oki R. Ichikawa J. Angew. Chem. Int. Ed. 2017; 56: 5890
- 40j Fuchibe K. Imaoka H. Ichikawa J. Chem. Asian J. 2017; 12: 2359
- 40k Fuchibe K, Shigeno K, Zhao N, Aihara H, Akisaka R, Morikawa T, Fujita T, Yamakawa K, Shimada T, Ichikawa J. J. Fluorine Chem. 2017; 203: 173
- 41 Fuchibe K. Takayama R. Yokoyama T. Ichikawa J. Chem. Eur. J. 2017; 23: 2831
- 42 Davis AP. Jaspars M. Angew. Chem., Int. Ed. Engl. 1992; 31: 470
- 43 Ichikawa J. Pure Appl. Chem. 2000; 72: 1685
- 44a Ichikawa J. Hamada S. Sonoda T. Kobayashi H. Tetrahedron Lett. 1992; 33: 337
- 44b Ichikawa J. J. Fluorine Chem. 2000; 105: 257
- 45 Ichikawa J. Miyazaki S. Fujiwara M. Minami T. J. Org. Chem. 1995; 60: 2320
- 46 Gibson SE. Lewis SE. Mainolfi N. J. Organomet. Chem. 2004; 689: 3873
- 47 Ichikawa J. Fujiwara M. Miyazaki S. Ikemoto M. Okauchi T. Minami T. Org. Lett. 2001; 3: 2345
- 48a Ichikawa J. Fujiwara M. Okauchi T. Minami T. Synlett 1998; 927
- 48b Nadano R. Fuchibe K. Ikeda M. Takahashi H. Ichikawa J. Chem. Asian J. 2010; 5: 1875
- 49 Ignatenko VA. Deligonul N. Viswanathan R. Org. Lett. 2010; 12: 3594
See also:
For a review, see:
See in particular:
See also:
For the synthesis using recent free difluorocarbene sources, see for example: [BrCF2CO2Na]
[Me3SiCF3]
[Me3SiCF2Cl, Me3SiCF2Br]
[Ph3P+CF2CO2 –]
Experimental and theoretical studies indicate that the strain energy of 1,1-difluorocyclopropane and the parent cyclopropane are 35.7–42.4 and 26.5–28.7 kcal/mol, respectively. See:
For our reactions using the α-cation stabilizing effect of fluorine, see: