Subscribe to RSS
DOI: 10.1055/s-0036-1591728
Regioselective Syntheses of Fluorinated Cyclopentanone Derivatives: Ring Construction Strategy Using Transition-Metal–Difluorocarbene Complexes and Free Difluorocarbene
This work was supported by JSPS KAKENHI Grant Numbers JP16H01002 (J.I.), JP16K13943 (J.I.), JP15K05414 (K.F.).Publication History
Received: 18 October 2017
Accepted: 26 October 2017
Publication Date:
11 December 2017 (online)
![](https://www.thieme-connect.de/media/synthesis/201803/lookinside/thumbnails/ss-2017-z0663-fa_10-1055_s-0036-1591728-1.jpg)
Abstract
The syntheses of fluorinated cyclopentanone derivatives, which have pharmaceutical and agrochemical importance are reported. The catalytic reaction of copper(I) and nickel(II) difluorocarbenes with silyl dienol ethers afforded 4,4-difluoro- and 5,5-difluorocyclopent-1-en-1-yl silyl ethers, respectively. The fluorine-directed and -activated Nazarov cyclization of 1-fluorovinyl vinyl ketones, which were prepared from silyl dienol ethers and free difluorocarbene, proceeded efficiently to afford 2-fluorocyclopent-2-en-1-ones. Moreover, fluorine-directed Nazarov cyclizations of 2,2-difluorovinyl vinyl ketones and 1-(trifluoromethyl)vinyl vinyl ketones afforded 3-fluorocyclopent-2-en-1-ones and 5-(trifluoromethyl)cyclopent-2-en-1-ones, respectively. In addition, derivatization of ring-difluorinated products also provided 3-fluorocyclopent-2-en-1-ones.
Key words
fluorine - carbene complexes - carbocation - difluorocarbene - Nazarov cyclization - cyclopentanones - organocatalystsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591728.
- Supporting Information
-
References
- 2a Wang J. Sánchez-Roselló M. Aceña JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
- 2b Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 2c Uneyama K. Organofluorine Chemistry . Blackwell Publishing; Oxford: 2006: 206-222
- 3 Fäh C. Hardegger LA. Baitsch L. Schweizer WB. Meyer S. Bur D. Diederich F. Org. Biomol. Chem. 2009; 7: 3947
- 4 Iguchi K. Kaneta S. Tsune C. Yamada Y. Chem. Pharm. Bull. 1989; 37: 1173
- 5a Takahashi S. Domon Y. Kitano Y. Shinozuka T. Patent WO 2014/142221 A1, 2014
- 5b Meegalla SK. Doller D. Liu R. Sha D. Lee Y. Soll RM. Wisnewski N. Silver GM. Dhanoa D. Bioorg. Med. Chem. Lett. 2006; 16: 1702
- 6a Pravst I. Zupan M. Stavber S. Synthesis 2005; 3140
- 6b Baudoux J. Cahard D. Org. React. 2007; 69: 347
- 7a Doyle MP. McKervey MA. Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: from Cyclopropanes to Ylides. Wiley; New York: 1998
- 7b Dorwald FZ. Metal Carbenes in Organic Synthesis . Wiley-VCH; Weinheim: 1999
- 7c Dötz KH. Metal Carbenes in Organic Synthesis . Springer; Berlin: 2004
- 7d Vougioukalakis GC. Grubbs RH. Chem. Rev. 2010; 110: 1746
- 8a Brahms DL. S. Dailey WP. Chem. Rev. 1996; 96: 1585
- 8b Dolbier WR. Jr, Battiste MA. Chem. Rev. 2003; 103: 1071
- 8c Ni C. Hu J. Synthesis 2014; 46: 842
- 9a Brothers PJ. Roper WR. Chem. Rev. 1988; 88: 1293
- 9b Clark GR. Hoskins SV. Roper WR. J. Organomet. Chem. 1982; 234: C9
- 9c Clark GR. Hoskins SV. Jones TC. Roper WR. J. Chem. Soc., Chem. Commun. 1983; 719
- 9d Koola JD. Roddick DM. Organometallics 1991; 10: 591
- 9e Huang D. Koren PR. Folting K. Davidson ER. Caulton KG. J. Am. Chem. Soc. 2000; 122: 8916
- 9f Hughes RP. Laritchev RB. Yuan J. Golen JA. Rucker AN. Rheingold AL. J. Am. Chem. Soc. 2005; 127: 15020
- 9g Goodman J. Grushin VV. Larichev RB. Macgregor SA. Marshall WJ. Roe DC. J. Am. Chem. Soc. 2009; 131: 4236
- 9h Martínez-Salvador S. Menjón B. Forniés J. Martín A. Usón I. Angew. Chem. Int. Ed. 2010; 49: 4286
- 9i Lee GM. Harrison DJ. Korobkov I. Baker RT. Chem. Commun. 2014; 50: 1128
- 9j Harrison DJ. Daniels AL. Korobkov I. Baker RT. Organometallics 2015; 34: 5683
- 10a Trnka TM. Day MW. Grubbs RH. Angew. Chem. Int. Ed. 2001; 40: 3441
- 10b Takahira Y. Morizawa Y. J. Am. Chem. Soc. 2015; 137: 7031
- 10c Zheng J. Lin J.-H. Yu L.-Y. Wei Y. Zheng X. Xiao J.-C. Org. Lett. 2015; 17: 6150
- 10d Feng Z. Min Q.-Q. Zhang X. Org. Lett. 2016; 18: 44
- 10e Goswami M. de Bruin B. Dzik WI. Chem. Commun. 2017; 53: 4382
- 10f Feng Z. Min Q.-Q. Fu X.-P. An L. Zhang X. Nat. Chem. 2017; 9: 918
- 10g Deng X.-Y. Lin J.-H. Xiao J.-C. Org. Lett. 2016; 18: 4384
- 11a Miller TG. Thanassi JW. J. Org. Chem. 1960; 25: 2009
- 11b Shen TY. Lucas S. Sarett LH. Tetrahedron Lett. 1961; 2: 43
- 12a Birchall JM. Cross GW. Haszeldine RN. Proc. Chem. Soc. 1960; 81
- 12b Knox LH. Velarde E. Berger S. Cuadriello D. Landis PW. Cross AD. J. Am. Chem. Soc. 1963; 85: 1851
- 12c Beard C. Dyson NH. Fried JH. Tetrahedron Lett. 1966; 7: 3281
- 13a Seyferth D. Hopper SP. Darragh KV. J. Am. Chem. Soc. 1969; 91: 6536
- 13b Seyferth D. Hopper SP. J. Org. Chem. 1972; 37: 4070
- 14a Oshiro K. Morimoto Y. Amii H. Synthesis 2010; 2080
- 14b Kageshima Y. Suzuki C. Oshiro K. Amii H. Synlett 2015; 26: 63
- 14c Wang F. Luo T. Hu J. Wang Y. Krishnan HS. Jog PV. Ganesh SK. Prakash GK. S. Olah GA. Angew. Chem. Int. Ed. 2011; 50: 7153
- 14d Krishnamoorthy S. Kothandaraman J. Saldana J. Prakash GK. S. Eur. J. Org. Chem. 2016; 4965
- 14e Li L. Ni C. Xie Q. Hu M. Wang F. Hu J. Angew. Chem. Int. Ed. 2017; 56: 9971
- 14f Wang F. Zhang W. Zhu J. Li H. Huang K.-W. Hu J. Chem. Commun. 2011; 47: 2411
- 14g Chang J. Song X. Huang W. Zhu D. Wang M. Chem. Commun. 2015; 51: 15362
- 14h Fedorov OV. Kosobokov MD. Levin VV. Struchkova MI. Dilman AD. J. Org. Chem. 2015; 80: 5870
- 14i Kosobokov MD. Levin VV. Struchkova MI. Dilman AD. Org. Lett. 2015; 17: 760
- 14j Zheng J. Lin J.-H. Cai J. Xiao J.-C. Chem. Eur. J. 2013; 19: 15261
- 15 For example, see refs 9b,e,j.
- 16a Gooßen LJ. Rodríguez N. Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
- 16b Rodriguez N. Gooßen LJ. Chem. Soc. Rev. 2011; 40: 5030
- 17 Fuchibe K. Aono T. Hu J. Ichikawa J. Org. Lett. 2016; 18: 4502
- 18a Storm DL. Spencer TA. Tetrahedron Lett. 1967; 1865
- 18b Son S. Fu GC. J. Am. Chem. Soc. 2007; 129: 1046
- 19a Xiao Q. Xia Y. Li H. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2011; 50: 1114
- 19b Hu M. Ni C. Hu J. J. Am Chem. Soc. 2012; 134: 15257
- 19c Xia Y. Zhang Y. Wang J. ACS Catal. 2013; 3: 2586
- 20 Martínez-Montero S. Fernández S. Sanghvi YS. Theodorakis EA. Detorio MA. McBrayer TR. Whitaker T. Schinazi RF. Gotor V. Ferrero M. Bioorg. Med. Chem. 2012; 20: 6885
- 21 Tajima T. Nakajima A. Fuchigami T. J. Org. Chem. 2006; 71: 1436
- 22 Aono T. Sasagawa H. Fuchibe K. Ichikawa J. Org. Lett. 2015; 17: 5736
- 23a Tian F. Kruger V. Bautista O. Duan J.-X. Li A.-R. Dolbier WR. Jr. Chen Q.-Y. Org. Lett. 2000; 2: 563
- 23b Dolbier WR. Jr. Tian F. Duan J.-X. Li A.-R. Ait-Mohand S. Bautista O. Buathong S. Marshall Baker J. Crawford J. Anselme P. Cai XH. Modzelewska A. Koroniak H. Battiste MA. Chen Q.-Y. J. Fluorine Chem. 2004; 125: 459
- 24a Inamoto K. Kuroda J.-i. Hiroya K. Noda Y. Watanabe M. Sakamoto T. Organometallics 2006; 25: 3095
- 24b Inamoto K. Kuroda J.-i. Sakamoto T. Hiroya K. Synthesis 2007; 2853
- 25a Wong HN. C. Hon MY. Tse CW. Yip YC. Tanko J. Hudlicky T. Chem. Rev. 1989; 89: 165
- 25b Baldwin JE. Chem. Rev. 2003; 103: 1197
- 25c Hudlický T. Kutchan TM. Naqvi SM. Org. React. 2004; 33: 247
- 25d Orr D. Percy JM. Harrison ZA. Chem. Sci. 2016; 7: 6369
- 26a Wu S.-H. Yu Q. Acta Chim. Sin. 1989; 7: 253
- 26b Song X. Chang J. Zhu D. Li J. Xu C. Liu Q. Wang M. Org. Lett. 2015; 17: 1712
- 26c Aikawa K. Toya W. Nakamura Y. Mikami K. Org. Lett. 2015; 17: 4996
- 27a Dolbier WR. Jr. Sellers SF. J. Am Chem. Soc. 1982; 104: 2494
- 27b Dolbier WR. Jr. Sellers SF. J. Org. Chem. 1982; 47: 1
- 28 Orr D. Percy JM. Tuttle T. Kennedy AR. Harrison ZA. Chem. Eur. J. 2014; 20: 14305
- 29 Experimental and theoretical studies indicate that the lengths of the C–C bonds distal and proximal to the geminal fluorine substituents in 1,1-difluorocyclopropane are 1.553 and 1.464 Å, respectively, while the length of the C–C bonds in the parent cyclopropane is 1.510 Å.
- 30a Liebman JF. Greenberg A. Chem. Rev. 1976; 76: 311
- 30b Khoury PR. Goddard JD. Tam W. Tetrahedron 2004; 60: 8103
- 31a Fuchibe K. Koseki Y. Sasagawa H. Ichikawa J. Chem. Lett. 2011; 40: 1189
- 31b Fuchibe K. Koseki Y. Aono T. Sasagawa H. Ichikawa J. J. Fluorine Chem. 2012; 133: 52
- 31c Fuchibe K. Bando M. Takayama R. Ichikawa J. J. Fluorine Chem. 2015; 171: 133
- 32 Takayama R. Yamada A. Fuchibe K. Ichikawa J. Org. Lett. 2017; 19: 5050
- 33 Takayama R. Fuchibe K. Ichikawa J. ARKIVOC 2018; (ii): 72
- 34a Song X. Tian S. Zhao Z. Zhu D. Wang M. Org. Lett. 2016; 18: 3414
- 34b Chang J. Xu C. Gao J. Gao F. Zhu D. Wang M. Org. Lett. 2017; 19: 1850
- 35a Harmata M. Chemtracts Org. Chem. 2004; 17: 416
- 35b Pellissier H. Tetrahedron 2005; 61: 6479
- 35c Frontier AJ. Collison C. Tetrahedron 2005; 61: 7577
- 35d West FG. Scadeng O. Wu Y.-K. Frandette RJ. Joy S. In Comprehensive Organic Synthesis . Vol. 5. Knochel P. Molander GA. Elsevier; Oxford: 2014: 827-866
- 35e Simeonov SP. Nunes JP. M. Guerra K. Kurteva VB. Afonso CA. M. Chem. Rev. 2016; 116: 5744
- 36a Denmark SE. Jones TK. J. Am. Chem. Soc. 1982; 104: 2642
- 36b Denmark SE. Habermas KL. Hite GA. Helv. Chim. Acta 1988; 71: 168
- 36c Denmark SE. Wallace MA. Walker CB. J. Org. Chem. 1990; 55: 5543
- 36d Kang K.-T. Kim SS. Lee JC. Sun UJ. S. Tetrahedron Lett. 1992; 33: 3495
- 37 Peel MR. Johnson CR. Tetrahedron Lett. 1986; 27: 5947
- 38a Tius MA. Kwok C.-K. Gu X.-Q. Zhao C. Synth. Commun. 1994; 24: 871
- 38b Casson S. Kocienski P. J. Chem. Soc., Perkin Trans. 1 1994; 1187
- 38c He W. Sun X. Frontier AJ. J. Am. Chem. Soc. 2003; 125: 14278
- 39a Smart BE. In Organofluorine Chemistry, Principles and Commercial Application . Banks RE. Smart BE. Tatlow J. C.; Plenum Press; New York: 1994: 57-88
- 39b Uneyama K. Organofluorine Chemistry . Blackwell Publishing; Oxford: 2006: 1-100
- 39c Bégué J.-P. Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; Hoboken: 2008: 1-22
- 40a Ichikawa J. Yokota M. Kudo T. Umezaki S. Angew. Chem. Int. Ed. 2008; 47: 4870
- 40b Fuchibe K. Jyono H. Fujiwara M. Kudo T. Yokota M. Ichikawa J. Chem. Eur. J. 2011; 11: 12175
- 40c Fuchibe K. Mayumi Y. Zhao N. Watanabe S. Yokota M. Ichikawa J. Angew. Chem. Int. Ed. 2013; 52: 7825
- 40d Fuchibe K. Mayumi Y. Yokota M. Aihara H. Ichikawa J. Bull. Chem. Soc. Jpn. 2014; 87: 942
- 40e Fuchibe K. Morikawa T. Ueda R. Okauchi T. Ichikawa J. J. Fluorine Chem. 2015; 179: 106
- 40f Fuchibe K. Morikawa T. Shigeno K. Fujita T. Ichikawa J. Org. Lett. 2015; 17: 1126
- 40g Suzuki N. Fujita T. Ichikawa J. Org. Lett. 2015; 17: 4984
- 40h Suzuki N. Fujita T. Amsharov KY. Ichikawa J. Chem. Commun. 2016; 52: 12948
- 40i Fuchibe K. Hatta H. Oh K. Oki R. Ichikawa J. Angew. Chem. Int. Ed. 2017; 56: 5890
- 40j Fuchibe K. Imaoka H. Ichikawa J. Chem. Asian J. 2017; 12: 2359
- 40k Fuchibe K, Shigeno K, Zhao N, Aihara H, Akisaka R, Morikawa T, Fujita T, Yamakawa K, Shimada T, Ichikawa J. J. Fluorine Chem. 2017; 203: 173
- 41 Fuchibe K. Takayama R. Yokoyama T. Ichikawa J. Chem. Eur. J. 2017; 23: 2831
- 42 Davis AP. Jaspars M. Angew. Chem., Int. Ed. Engl. 1992; 31: 470
- 43 Ichikawa J. Pure Appl. Chem. 2000; 72: 1685
- 44a Ichikawa J. Hamada S. Sonoda T. Kobayashi H. Tetrahedron Lett. 1992; 33: 337
- 44b Ichikawa J. J. Fluorine Chem. 2000; 105: 257
- 45 Ichikawa J. Miyazaki S. Fujiwara M. Minami T. J. Org. Chem. 1995; 60: 2320
- 46 Gibson SE. Lewis SE. Mainolfi N. J. Organomet. Chem. 2004; 689: 3873
- 47 Ichikawa J. Fujiwara M. Miyazaki S. Ikemoto M. Okauchi T. Minami T. Org. Lett. 2001; 3: 2345
- 48a Ichikawa J. Fujiwara M. Okauchi T. Minami T. Synlett 1998; 927
- 48b Nadano R. Fuchibe K. Ikeda M. Takahashi H. Ichikawa J. Chem. Asian J. 2010; 5: 1875
- 49 Ignatenko VA. Deligonul N. Viswanathan R. Org. Lett. 2010; 12: 3594
See also:
For a review, see:
See in particular:
See also:
For the synthesis using recent free difluorocarbene sources, see for example: [BrCF2CO2Na]
[Me3SiCF3]
[Me3SiCF2Cl, Me3SiCF2Br]
[Ph3P+CF2CO2 –]
Experimental and theoretical studies indicate that the strain energy of 1,1-difluorocyclopropane and the parent cyclopropane are 35.7–42.4 and 26.5–28.7 kcal/mol, respectively. See:
For our reactions using the α-cation stabilizing effect of fluorine, see: