Synthesis 2018; 50(09): 1815-1819
DOI: 10.1055/s-0036-1591763
psp
© Georg Thieme Verlag Stuttgart · New York

Dihydroxylation of Olefins with Potassium Permanganate Catalyzed­ by Imidazolium Salt

Imran Khan
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. of China   Email: luozb@ujs.edu.cn   Email: xiejm@ujs.edu.cn
,
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. of China   Email: luozb@ujs.edu.cn   Email: xiejm@ujs.edu.cn
,
Anil Valeru
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. of China   Email: luozb@ujs.edu.cn   Email: xiejm@ujs.edu.cn
,
Yin Xu
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. of China   Email: luozb@ujs.edu.cn   Email: xiejm@ujs.edu.cn
,
Bin Liu
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. of China   Email: luozb@ujs.edu.cn   Email: xiejm@ujs.edu.cn
,
Bhavanarushi Sangepu
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. of China   Email: luozb@ujs.edu.cn   Email: xiejm@ujs.edu.cn
,
Ji-Min Xie*
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. of China   Email: luozb@ujs.edu.cn   Email: xiejm@ujs.edu.cn
› Author Affiliations
The authors acknowledge the financial support of National Natural Science Foundation (No. 21676129), Jiangsu University scientific research funding (13JD062), and Jiangsu Postdoctoral Foundation (1601034B).
Further Information

Publication History

Received: 19 December 2017

Accepted after revision: 26 January 2018

Publication Date:
12 February 2018 (online)


Abstract

The development of an efficient and cost-effective cis-di­hydroxylation reaction of acrylate derivatives was achieved. The reaction proceeded in acetone with an imidazolium salt as catalyst to furnish the dihydroxylation of olefins at 0–5 °C using KMnO4 as the oxidant. This efficient and non-aqueous protocol was highly suitable for the large-scale preparation of cis-dihydroxylated compounds from the corresponding acrylate derivatives in high yields without overoxidation.

Supporting Information

 
  • References

    • 1a Bolm C. Hildebrand JP. Muñiz K. In Catalytic Asymmetric Synthesis . 2nd ed.; Ojima I. Wiley-VCH; New York: 2000: 399
    • 1b Kolb HC. Van Nieuwenhze MS. Sharpless KB. Chem. Rev. 1994; 94: 2483
    • 1c Schröder M. Chem. Rev. 1980; 80: 187
    • 2a Johnson RA. Sharpless KB. Catalytic Asymmetric Synthesis . 2nd ed.; Ojima I. Wiley-VCH; New York: 2000: 357
    • 2b Gao Y. Cheun Y. Osmium Tetroxide–N-Methylmorpholine N-Oxide. In e-EROS Encyclopedia of Reagents for Organic Synthesis. Wiley; Hoboken: 2013. ; DOI: 10.1002/047084289X.ro009.pub2
    • 2c Chughtai MJ. Donohoe TJ. Gao Y. Harris RM. Kim S.-M. Oh JS. Song C.-E. Yang JW. Handbook of Reagents for Organic Synthesis: Catalytic Oxidation Reagents . Fuchs PL. Wiley; Chichester: 2013. 433
    • 3a Chen K. Que LJr. Angew. Chem. Int. Ed. 1999; 38: 2227
    • 3b Chen K. Costas M. Kim J. Tipton AK. Que LJr. J. Am. Chem. Soc. 2002; 124: 3026
    • 3c Chen K. Costas M. Que LJr. J. Chem. Soc., Dalton Trans. 2002; 672
    • 3d Fujita M. Costas M. Que LJr. J. Am. Chem. Soc. 2003; 125: 9912
    • 3e Klopstra M. Roelfes G. Hage R. Kellogg RM. Feringa BL. Eur. J. Inorg. Chem. 2004; 846
    • 3f Rotthaus O. Le Roy S. Tomas A. Barkigia KM. Artaud I. Inorg. Chim. Acta 2004; 357: 2211
    • 3g De Vos DE. de Wildeman S. Sels BF. Grobet PJ. Jacobs PA. Angew. Chem. Int. Ed. 1999; 38: 980
    • 3h de Boer JW. Brinksma J. Browne WR. Meetsma A. Alsters PL. Hage R. Feringa BL. J. Am. Chem. Soc. 2005; 127: 7990
    • 3i Codola Z. Lloret-Fillol J. Costas M. Prog. Inorg. Chem. 2014; 59: 447
    • 3j Oloo WN. Que LJr. Acc. Chem. Res. 2015; 48: 2612
  • 4 Mergott DJ. Name Reactions for Functional Group Transformations . Li JJ. Corey EJ. Wiley-Interscience; Hoboken: 2007: 327
    • 5a Stewart R. Oxidation Mechanisms: Applications to Organic Chemistry . Benjamin; New York: 1964: 58
    • 5b Wiberg KB. Saebarth KA. J. Am. Chem. Soc. 1957; 79: 2822
    • 5c Lee DG. Brownridge JR. J. Am. Chem. Soc. 1973; 95: 3033
    • 5d Wiberg KB. Deutsch CJ. J. Am. Chem. Soc. 1973; 95: 3034
    • 5e Fatiadi AJ. Synthesis 1987; 85
    • 5f Zimmer R. Collas M. Czerwonka R. Hain U. Reissig H. Synthesis 2008; 237
    • 6a Foglia TA. Barr PA. Malloy AJ. J. Am. Oil Chem. Soc. 1977; 54: 858
    • 6b Watber WP. Shepherd JP. Tetrahedron Lett. 1972; 13: 4907
    • 6c Taylor JE. Williams D. Edwards K. Otonnaa D. Samanich D. Can. J. Chem. 1984; 62: 11
    • 7a Hazra BG. Pore VS. Chordia MD. Bahule BB. Basu S. J. Chem. Res. 2001; 500
    • 7b Hazra BG. Pore VS. J. Indian Chem. Soc. 2003; 80: 1065
  • 8 Bhunnoo RA. Hu Y. Laine DI. Brown RC. D. Angew. Chem. Int. Ed. 2002; 41: 3479
  • 9 Wang C. Zong L. Tan C.-H. J. Am. Chem. Soc. 2015; 137: 10677
  • 10 Luo ZB. Zhao C. Xie JM. Lu HF. Synthesis 2016; 48: 3696
  • 11 Wang J. Xia Q. Drug Delivery 2014; 21: 328
  • 12 Chow W.-S. Liu Y. Che C.-M. Chem. Commun. 2011; 47: 11204
  • 13 Gupta SK. US 20060110415, 2006
  • 14 Borrell M. Costas M. J. Am. Chem. Soc. 2017; 139: 12821