Published as part of the Special Section 9th EuCheMS Organic Division Young Investigator Workshop
Abstract
The fast and biocompatible ligation of 1,2,4,5-tetrazines with strained alkenes has found numerous applications in biomedical sciences. The reactivity of a 1,2,4,5-tetrazine can generally be tuned by changing its electronic properties by varying the substituents in the 3- and/or 6-position. An increased reactivity of such bioorthogonal probes upon conjugation or attachment to a target molecule has not previously been described. Such an approach would be beneficial, as it would minimize the impact of residual tetrazine reagents and/or impurities. Herein, we describe such a ‘kinetic turn-on’ of 1,2,4,5-tetrazines upon conjugation. On the basis of the significant increase in reactivity following N-acylation predicted by quantum chemical calculations, we prepared 3-aminotetrazines and their corresponding acetylated derivatives. An investigation of the reaction kinetics indeed revealed a remarkable increase in reactivity upon acylation.
Key words
click chemistry - tetrazines - kinetics - bioorthogonal chemistry - Diels–Alder reaction - acylation