Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(05): 560-565
DOI: 10.1055/s-0036-1591854
DOI: 10.1055/s-0036-1591854
letter
Bioinspired Catalysis: Self-Assembly of a Protein and DNA as a Catalyst for the Aldol Reaction in Aqueous Media
We are grateful to the National Natural Science Foundation of China (21402188) and the Sichuan Province Natural Science Foundation of China (2017JY0056).Further Information
Publication History
Received: 08 September 2017
Accepted after revision: 09 November 2017
Publication Date:
20 December 2017 (online)
Abstract
An interesting bioinspired catalyst formed from readily available DNA and a protein through electrostatic interaction in situ proved to be efficient in catalyzing aldol reactions under mild conditions in water. By using a self-assembling catalytic system formed from protamine and DNA, aldol adducts were obtained with high yields and moderate enantioselectivities. Preliminary experiments demonstrated that the chirality of the DNA could be effectively transferred to the reaction product through the bound molecules or proteins.
Key words
self-assembly - protamine - DNA - electrostatic interaction - bioinspired catalysis - aldol reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591854.
- Supporting Information
-
References and Notes
- 1 Robinson R. J. Chem. Soc., Trans. 1917; 111: 762
- 2 Nicolaou KC. Vourloumis D. Winssinger N. Baran PS. Angew. Chem. Int. Ed. 2000; 39: 44
- 3 Breslow R. Chem. Soc. Rev. 1972; 1: 553
- 4 Zhu S. Guo Z. Huang Z. Jiang H. Chem. Eur. J. 2014; 20: 2425
- 5 Santra S. Andreana PR. Angew. Chem. Int. Ed. 2011; 50: 9418
- 6 Stillman TJ. Baker PJ. Britton KL. Rice DW. J. Mol. Biol. 1993; 234: 1131
- 7 Chook YM. Gray JV. Ke H. Lipscomb WN. J. Mol. Biol. 1994; 240: 476
- 8 Lee AY. Karplus PA. Ganem B. Clardy J. J. Am. Chem. Soc. 1995; 117: 3627
- 9 Bew SP. Stephenson GR. Rouden J. Ashford P.-A. Bourane M. Charvet A. Dalstein VM. D. Jauseau R. Hiatt-Gipson GD. Martinez-Lozano LA. Adv. Synth. Catal. 2015; 357: 1245
- 10 Barbas III CF. Heine A. Zhong GF. Hoffmann T. Gramatikova S. Björnestedt R. List B. Anderson J. Stura EA. Wilson IA. Lerner RA. Science 1997; 278: 2085
- 11 Liu KC. Kajimoto T. Chen L. Zhong Z. Ichikawa Y. Wong CH. J. Org. Chem. 1991; 56: 6280
- 12 Mase N. Barbas III CF. Org. Biomol. Chem. 2010; 8: 4043
- 13 Machajewski TD. Wong C.-H. Angew. Chem. Int. Ed. 2000; 39: 1352
- 14 Trost BM. Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
- 15 Tang Z. Yang Z.-H. Cun L.-F. Gong L.-Z. Mi A.-Q. Jiang Y.-Z. Org. Lett. 2004; 6: 2285
- 16 Aprile C. Giacalone F. Gruttadauria M. Marculescu AM. Noto R. Revell JD. Wennemers H. Green Chem. 2007; 9: 1328
- 17 Córdova A. Zou W. Dziedzic P. Ibrahem I. Reyes E. Xu Y. Chem. Eur. J. 2006; 12: 5383
- 18 Colby Davie EA. Mennen SM. Xu Y. Miller SJ. Chem. Rev. 2007; 107: 5759
- 19 Dziedzic P. Zou W. Háfren J. Córdova A. Org. Biomol. Chem. 2006; 4: 38
- 20 Wennemers H. Chem. Commun. 2011; 47: 12036
- 21 Zou WB. Ibrahem I. Dziedzic P. Sunden H. Cordova A. Chem. Commun. 2005; 4946
- 22 Roelfes G. Feringa BL. Angew. Chem. Int. Ed. 2005; 44: 3230
- 23 Roe S. Ritson DJ. Garner T. Searle M. Moses JE. Chem. Commun. 2010; 4309
- 24 Roelfes G. Boersma AJ. Feringa BL. Chem. Commun. 2006; 635
- 25 Boersma AJ. Feringa BL. Roelfes G. Angew. Chem. Int. Ed. 2009; 48: 3346
- 26 Park S. Ikehata K. Watabe R. Hidaka Y. Rajendran A. Sugiyama H. Chem. Commun. 2012; 48: 10398
- 27 Coquière D. Feringa BL. Roelfes G. Angew. Chem. Int. Ed. 2007; 46: 9308
- 28 Megens RP. Roelfes G. Chem. Commun. 2012; 48: 6366
- 29 Sun G. Fan J. Wang Z. Li Y. Synlett 2008; 2491
- 30 Misaki T. Takimoto G. Sugimura T. J. Am. Chem. Soc. 2010; 132: 6286
- 31 Shah J. Blumenthal H. Yacob Z. Liebscher J. Adv. Synth. Catal. 2008; 350: 1267
- 32 Ube H. Shimada N. Terada M. Angew. Chem. Int. Ed. 2010; 49: 1858
- 33 Lombardo M. Easwar S. Pasi F. Trombini C. Dhavale DD. Tetrahedron 2008; 64: 9203
- 34 Valero G. Moyano A. Chirality 2016; 28: 599
- 35 Wu J. Zou Y. Li C. Sicking W. Piantanida I. Yi T. Schmuck C. J. Am. Chem. Soc. 2012; 134: 1958
- 36 Balhorn R. Genome Biol. 2007; 8: 227
- 37 Lüke L. Campbell P. Varea SánchezM. Nachman MW. Roldan ER. S. Proc. R. Soc. B 2014; 281
- 38 Woop M. Schwab RD. Lee JH. Carter AR. Biophys. J. 2015; 108: 393a
- 39 Brewer LR. Corzett M. Balhorn R. Science 1999; 286: 120
- 40 Boukari K. Caoduro C. Kacem R. Skandrani N. Borg C. Boulahdour H. Gharbi T. Delage-Mourroux R. Hervouet E. Pudlo M. Picaud F. J. Membr. Biol. 2016; 249: 493
- 41 4-Aryl-4-hydroxybutan-2-ones 3a–g; General ProcedureA mixture of protamine (1.5 mg) and DNA (1.5 mg) in 20 mM Hepes buffer (2 mL) at r.t. was stirred with a magnetic stirrer for 1 h. Aldehyde 1 (0.1 mmol) and acetone (0.3 ml) were added, and the resulting mixture was stirred for 2 d at r.t. until the reaction was complete (TLC). The mixture was extracted with EtOAc (3 × 2 mL), and then the combined organic extracts were washed with brine (5 mL), dried (Na2SO4), and filtered. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography [silica gel, PE–EtOAc (5:1 to 3:1)]. 4-Hydroxy-4-(2-nitrophenyl)butan-2-one (3a)faint yellow solid; yield: 14.8 mg (71%; 33% ee); mp 58–60 °C (Lit.42 59–61 °C); HPLC: Chiralpak AS-H (hexane–i-PrOH (80:20); flow rate: 1 mL/min, λ = 254 nm): t 1 = 8.9 min; t 2 = 11.3 min. 1H NMR (400 MHz, CDCl3): δ = 7.95 (dd, J = 8.2, 1.0, 1 H), 7.89 (d, J = 7.5, 1 H), 7.71–7.62 (m, 1 H), 7.50–7.36 (m, 1 H), 5.67 (dd, J = 9.4, 1.9, 1 H), 3.74 (s, 1 H), 3.12 (dd, J = 17.8, 2.0, 1 H), 2.72 (dd, J = 17.8, 9.5, 1 H), 2.23 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 208.95, 147.22, 138.52, 133.95, 128.40, 128.29, 124.56, 65.73, 51.18, 30.57.
- 42 Lei M. Xia S. Wang JF. Ge ZM. Cheng TM. Li RT. Chirality. 2010; 22: 580