Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(05): 621-626
DOI: 10.1055/s-0036-1591893
DOI: 10.1055/s-0036-1591893
letter
Carbonylative Synthesis of Thiochromenones via Palladium-Catalyzed tert-Butyl Isocyanide Insertion
Further Information
Publication History
Received: 16 October 2017
Accepted after revision: 18 December 2017
Publication Date:
23 January 2018 (online)
Abstract
A flexible and efficient carbonylative synthesis of thiochromenones from the commercially available materials by utilizing tert-butyl isocyanide as carbonyl source has been developed. This methodology efficiently constructs thiochromenones in moderate to excellent yields with the advantages of wide range of substrates and being applicable to library synthesis.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591893.
- Supporting Information
-
References and Notes
- 1a Clayden J. Maclellan P. Beilstein J.Org. Chem. 2011; 7: 582
- 1b Ramalingam K. Thyvelikakath GX. Berlin KD. Chesnut RW. Brown RA. Durham NN. Ealick SE. Van H D. J. Med. Chem. 1977; 20: 847
- 1c Razdan RK. Bruni RJ. Mehta AC. Weinhardt KK. Papanastassiou ZB. J. Med. Chem. 1978; 21: 643
- 1d Nakib TA. Bezjak V. Meegan MJ. Chandy R. Eur. J. Med. Chem. 1990; 25: 455
- 1e Lee JI. Lee JH. Food Sci. Biotechnol. 2014; 23: 957
- 1f Sangeetha S. Muthupandi P. Sekar G. Org. Lett. 2015; 17: 6006
- 1g Shen C.-R. Spannenberg A. Wu X.-F. Angew. Chem. Int. Ed. 2016; 55: 5067
- 2 Nakazumi H. Ueyama T. Kitao T. J. Heterocycl. Chem. 1985; 22: 1593
- 3 Nakazumi H. Ueyama T. Kitao T. J. Heterocycl. Chem. 1984; 21: 193
- 4 Couquelet J. Tronche P. Niviere P. Andraud G. Trav. Soc. Pharm. Montpellier 1963; 23: 214
- 5 Holshouser MH. Loeffler LJ. Hall IH. J. Med. Chem. 1981; 24: 853
- 6 Razdan RK. Bruni RJ. Mehta AC. Weinhardt KK. Papanastassiou ZB. J. Med. Chem. 1978; 21: 643
- 7 Dhanak D. Keenan RM. Burton G. Kaura A. Darcy MG. Shah DH. Ridgers LH. Breen A. Lavery P. Tew DG. Bioorg. Med. Chem. Lett. 1998; 8: 3677
- 8a Kitani S. Sugawara K. Tsutsumi K. Morimoto T. Kakiuchi K. Chem. Commun. 2008; 18: 2103
- 8b Kakiuchi K. Zhang Y. Tanimoto H. Nishiyama Y. Morimoto T. Synlett 2012; 23: 367
- 8c Sugiura R. Kozaki R. Kitani S. Gosho Y. Tanimoto H. Nishiyama Y. Morimoto T. Kakiuchi K. Tetrahedron 2013; 69: 3984
- 9a Fuchs FC. Eller GA. Holzer W. Molecules 2009; 14: 3814
- 9b Xiong D.-L. Zhou W.-X. Lu Z.-W. Zeng S.-P. Wang J. Chem. Commun. 2017; 53: 6844
- 9c Jenifer Vijay TA. Nandeesh KN. Raghavendra GM. Rangappa KS. Mantelingu K. Tetrahedron Lett. 2013; 54: 6533
- 9d Kobayashi K. Kobayashi A. Ezaki K. Heterocycles 2012; 85: 1997
- 9e Kim HY. Song E. Oh K. Org. Lett. 2017; 19: 312
- 9f Willy B. Frank W. Müller TJ. Org. Biomol. Chem. 2010; 8: 90
- 9g Szamosvári D. Reichle VF. Jureschi M. Böttcher T. Chem. Commun. 2016; 52: 13440
- 9h Yang X. Li S. Liu H. Jiang Y. Fu H. RSC Adv. 2012; 2: 6549
- 10a Schneller SW. Adv. Heterocycl. Chem. 1975; 18: 59
- 10b Nakazumi H. Wanatabe S. Kitaguchi T. Kitao T. Bull. Chem. Soc. Jpn. 1990; 63: 847
- 11a Inami T. Kurahashi T. Matsubara S. Org. Lett. 2014; 16: 5660
- 11b Bouisseau A. Glancy J. Willis MC. Org. Lett. 2016; 18: 5676
- 12a Qiu GY.S. Ding Q.-P. Wu J. Chem. Soc. Rev. 2013; 42: 5257
- 12b Lang S. Chem. Soc. Rev. 2013; 42: 4867
- 12c Song B.-R. Xu B. Chem. Soc. Rev. 2017; 46: 1103
- 13a Passerini M. Simone L. Gazz. Chim. Ital. 1921; 51: 126
- 13b Passerini M. Ragni G. Gazz. Chim. Ital. 1931; 61: 964
- 13c Ugi I. Meyr R. Fetzer U. Steinbrückner C. Angew. Chem. 1959; 71: 386
- 13d Ugi I. Steinbrückner C. Angew. Chem. 1960; 72: 267
- 13e Ugi I. Angew. Chem., Int. Ed. Engl. 1962; 1: 8
- 14a Tobisu M. Imoto S. Ito S. Chatani N. J. Org. Chem. 2010; 75: 4835
- 14b Nanjo T. Tsukano C. Takemoto Y. Org. Lett. 2012; 14: 4270
- 14c Tang T. Fei X.-D. Ge Z.-Y. Chen Z. Zhu Y.-M. Ji S.-J. J. Org. Chem. 2013; 78: 3170
- 14d Lei C.-H. Wang D.-X. Zhao L. Zhu J. Wang M.-X. J. Am. Chem. Soc. 2013; 135: 4708
- 14e Chen Z.-B. Zhang Y. Yuan Q. Zhang F.-L. Zhu Y.-M. Shen J.-K. J. Org. Chem. 2016; 81: 1610
- 15a Tyagi V. Khan S. Giri A. Gauniyal HM. Sridhar B. Chauhan PM. S. Org. Lett. 2012; 14: 3126
- 15b Wang Y. Zhu Q. Adv. Synth. Catal. 2012; 354: 1902
- 15c Pan Y.-Y. Wu Y.-N. Chen Z.-Z. Hao W.-J. Li G. Tu S.-J. Jiang B. J. Org. Chem. 2015; 80: 5764
- 15d Liu Y.-J. Xu H. Kong W.-J. Shang M. Dai H.-X. Yu J.-Q. Nature 2014; 515: 389
- 15e Jiang X. Tang T. Wang J.-M. Chen Z. Zhu Y.-M. Ji S.-J. J. Org. Chem. 2014; 79: 5082
- 16a Liu B. Yin M. Gao H. Wu W. Jiang H. J. Org. Chem. 2013; 78: 3009
- 16b Geden JV. Pancholi AK. Shipman M. J. Org. Chem. 2013; 78: 4158
- 17a Saluste CG. Whitby RJ. Furber M. Tetrahedron Lett. 2001; 42: 6191
- 17b Soeta T. Tamura K. Ukaji Y. Org. Lett. 2012; 14: 1226
- 17c Fei X.-D. Ge Z.-Y. Tang T. Zhu Y.-M. Ji S.-J. J. Org. Chem. 2012; 77: 10321
- 18 Yuan Q. Chen Z.-B. Zhang F.-L. Zhu Y.-M. Org. Biomol. Chem. 2017; 15: 1628
- 19 Jiang X. Wang J.-M. Zhang Y. Chen Z. Zhu Y.-M. Ji S.-J. Org. Lett. 2014; 16: 3492
- 20a Takikawa Y. Shimada K. Matsumoto H. Tanabe H. Takizawa S. Chem. Lett. 1983; 12: 1351
- 20b Paradies J. Synthesis 2010; 947
- 21a Kondo T. Mitsudo T. Chem. Rev. 2000; 100: 3205
- 21b Beletskaya IP. Ananikov VP. Chem. Rev. 2011; 111: 1596
- 22 Modern Alkyne Chemistry . Trost BM. Li C.-J. Wiley-VCH; Weinheim: 2014: 9
- 23 General Procedure In a 15 mL sealed tube equipped with a magnetic stirring bar were added 1 (1 mmol), 2 (0.8 mmol), tert-butyl isocyanide (1.2 mmol, 136 μL), Pd(OAc)2 (0.03 mmol, 7 mg), DPEPhos (0.06 mmol, 32 mg), Cs2CO3 (0.8 mmol, 261 mg), and anhydrous DMF (2.0 mL). The tube was purged with argon, and the contents were stirred at 100 °C for 2 h. Then Na2S·9H2O (1.2 mmol, 240 mg) was added for 2 h. After reaction completion, the mixture was filtered through a pad of Celite, and DMF was removed by a vacuum. The combined filtrates were refluxed in THF (15 mL) and oxalic acid (1 M, 3 mL) for 8 h. The solvents were removed under reduced pressure, then poured into brine (20 mL) and extracted by ethyl acetate (3 × 30 mL). The combined organic layers were dried (Na2SO4) and evaporated. The residue was purified on a silica gel column using petroleum ether/ethyl acetate as the eluent to give the pure target product.
- 24 2-(2-Fluorophenyl)-4H-thiochromen-4-one (3j) Yellow solid (116 mg, 57%); mp 128–130 °C. 1H NMR (400 MHz, CDCl3): δ = 8.56 (d, J = 7.9 Hz, 1 H), 7.65 (d, J = 3.1 Hz, 2 H), 7.56 (dd, J = 13.0, 5.6 Hz, 2 H), 7.48 (dd, J = 13.2, 7.1 Hz, 1 H), 7.29 (d, J = 7.5 Hz, 1 H), 7.21 (d, J = 12.4 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 180.6 (s), 160.6 (s), 158.1 (s), 147.1 (s), 138.2 (s), 132.2 (d, J C-F = 8.4 Hz), 131.8 (s), 131.0 (s), 130.3 (d, J C-F = 1.9 Hz), 128.8 (s), 128.0 (s), 127.0 (d, J C-F = 3.7 Hz), 126.5 (s), 124.9 (d, J C-F = 3.8 Hz), 124.6 (d, J C-F = 13.1 Hz), 117.0 (s), 116.8 (s). IR (KBr): 1627, 1593, 1439, 1325, 1098, 758, 732, 685 cm–1. HRMS: m/z calcd for C15H10FOS [M + H]+: 257.0437; found: 257.0428.
- 25 2-(Thiophen-3-yl)-4H-thiochromen-4-one (3n) Yellow solid (78 mg, 40%); mp 135–140 °C. 1H NMR (400 MHz, CDCl3): δ = 8.53 (d, J = 8.0 Hz, 1 H), 7.78 (s, 1 H), 7.65–7.43 (m, 6 H). 13C NMR (101 MHz, CDCl3): δ = 181.2 (s), 147.0 (s), 137.8 (s), 137.3 (s), 131.8 (s), 131.2 (s), 128.7 (s), 127.9 (s), 127.7 (s), 126.5 (s), 125.4 (s), 125.2 (s), 122.2 (s). IR (KBr): 3094, 1605, 1582, 1543, 1329, 1101, 774, 738, 631 cm–1. HRMS: m/z calcd for C13H9OS2 [M + H]+: 245.0096; found: 245.0093.
- 26 8-Fluoro-2-(p-tolyl)-4H-thiochromen-4-one (5a) Yellow solid (143 mg, 66%); mp 160–164 °C. 1H NMR (400 MHz, CDCl3): δ = 8.35 (d, J = 8.0 Hz, 1 H), 7.62 (d, J = 8.0 Hz, 2 H), 7.52 (dd, J = 13.4, 7.9 Hz, 1 H), 7.39 (t, J = 8.7 Hz, 1 H), 7.32 (d, J = 7.8 Hz, 2 H), 7.24 (s, 1 H), 2.44 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 180.2 (s), 159.3 (s), 156.8 (s), 152.2 (s), 141.8 (s), 133.8 (s), 132.7 (s), 132.6 (s), 130.2 (s), 127.9 (d, J C-F = 7.8 Hz), 127.0 (s), 124.3 (s), 123.0 (s), 117.2 (d, J C-F = 19.6 Hz), 21.5 (s). IR (KBr): 2922, 1620, 1601, 1549, 1247, 1129, 819 798, 709 cm–1. HRMS: m/z calcd for C16H12FOS [M + H]+: 271.0594; found: 271.0598.
- 27 N-(tert-Butyl)-1-(2-fluorophenyl)-3-phenylprop-2-yn-1-imine (8) Yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.67 (t, J = 8.6 Hz, 1 H), 7.53 (d, J = 7.8 Hz, 2 H), 7.43–7.33 (m, 4 H), 7.17 (t, J = 7.5 Hz, 1 H), 7.13–7.05 (m, 1 H), 1.58 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 161.9 (s), 159.4 (s), 144.6 (s), 133.4 (s), 131.8 (s), 131.0 (d, J C-F = 8.4 Hz), 130.4 (d, J C-F = 2.4 Hz), 129.8 (s), 129.4 (d, J C-F = 11.0 Hz), 128.7 (s), 124.2 (d, J C-F = 3.7 Hz), 122.0 (s), 116.5 (s), 116.3 (s), 98.9 (d, J C-F = 2.9 Hz), 85.0 (s), 57.9 (s), 29.6 (s). IR (KBr): 2968, 1609, 1590, 1485, 1305, 1222, 752, 648. HRMS: m/z calcd for C19H18FN [M + H]+: 280.1502; found: 280.1509.
For some recent reports on isocyanides insertion to form C–C bonds, see:
For some recent reports on isocyanides insertion to form intramolecular C–N bonds, see:
For some recent reports on isocyanides insertion to form intramolecular C–N bonds, see:
For some recent reports on isocyanides insertion to form C–O bonds, see: