Synlett 2018; 29(07): 933-937
DOI: 10.1055/s-0036-1591919
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Symmetrical N-Aryl-C-phosphonoacetamidines

Elena B. Erkhitueva
a   Saint Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg 199034, Russian Federation
,
Taras L. Panikorovskii
a   Saint Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg 199034, Russian Federation
,
Nataly I. Svintsitskaya*
b   Saint Petersburg State Institute of Technology (Technical University), Moskovskii pr. 26, St. Petersburg 190013, Russian Federation   Email: nsvincickaya@mail.ru
,
Rostislav Е. Trifonov
a   Saint Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg 199034, Russian Federation
b   Saint Petersburg State Institute of Technology (Technical University), Moskovskii pr. 26, St. Petersburg 190013, Russian Federation   Email: nsvincickaya@mail.ru
,
Аlbina V. Dogadina
b   Saint Petersburg State Institute of Technology (Technical University), Moskovskii pr. 26, St. Petersburg 190013, Russian Federation   Email: nsvincickaya@mail.ru
› Author Affiliations
This work was financially supported by the Russian Foundation for Basic Research (Grant no. 16-03-00474).
Further Information

Publication History

Received: 05 December 2017

Accepted after revision: 04 January 2018

Publication Date:
06 February 2018 (online)


Abstract

An efficient synthesis of a series of novel symmetrical N-aryl-C-phosphonoacetamidines through reaction of diisopropyl (chloroethynyl)phosphonate with primary aryl amines was developed. This procedure tolerates a wide range of functional groups and has a good atom economy. The (E)-isomer was the major product that crystallized preferentially over the (Z)-isomer.

Supporting Information

 
  • References and Notes

    • 1a Gautier J.-A. Miocque M. Combet Farnoux C. In The Chemistry of Amidines and Imidates . Patai S. Wiley; London: 1975
    • 1b Boyd GV. In The Chemistry of Amidines and Imidates . Vol. 2. Patai S. Rappoport Z. Wiley; London: 1991: 367
    • 2a Dunn PJ. In Comprehensive Organic Functional Group Transformations . Vol. 5. Katritzky AR. Meth-Cohn O. Rees CW. Pergamon; Amsterdam: 1995: 741
    • 2b Ishikawa T. Kumamoto T. In Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts. Ishikawa T. Wiley; Chichester: 2009: 49
    • 2c Aly AA. Nour El-Din AM. ARKIVOC 2008; (i): 153
  • 7 Kort ME. Drizin I. Gregg RJ. Scanio MJ. C. Shi L. Gross MF. Atkinson RN. Johnson MS. Pacofsky GJ. Thomas JB. Carroll WA. Krambis MJ. Liu D. Shieh C.-C. Zhang X. Hernandez G. Mikusa JP. Zhong C. Joshi S. Honore P. Roeloffs R. Marsh KC. Murray BP. Liu J. Werness S. Faltynek CR. Krafte DS. Jarvis MF. Chapman ML. Marron BE. J. Med. Chem. 2008; 51: 407
  • 10 Brasche G. Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
  • 11 Ma B. Wang Y. Peng J. Zhu Q. J. Org. Chem. 2011; 76: 6362
    • 15a Chen X. Kopecky DJ. Mihalic J. Jeffries S. Min X. Heath J. Deignan J. Lai S. Fu Z. Guimaraes C. Shen S. Li S. Johnstone S. Thibault S. Xu H. Cardozo M. Shen W. Walker N. Kayser F. Wang Z. J. Med. Chem. 2012; 55: 3837
    • 15b Cheng T.-RR. Weinheimer S. Tarbet EB. Jan J.-T. Cheng Y.-SE. Shie J.-J. Chen C.-C. Chen C.-A. Hsieh W.-C. Huang P.-W. Lin W.-H. Wang S.-Y. Fang J.-M. Hu OY.-P. Wong C.-H. J. Med. Chem. 2012; 55: 8657
    • 15c Dang Q. Liu Y. Cashion DK. Kasibhatla SR. Jiang T. Taplin F. Jacintho JD. Li H. Sun Z. Fan Y. DaRe J. Tian F. Li W. Gibson T. Lemus R. van Poelje PD. Potter SC. Erion MD. J. Med. Chem. 2011; 54: 153
    • 15d Alexandre F. Amador A. Bot S. Caillet C. Convard T. Jakubik J. Musiu C. Poddesu B. Vargiu L. Liuzzi M. Roland A. Seifer M. Standring D. Storer R. Dousson CB. J. Med. Chem. 2011; 54: 392
  • 20 Sinitsa AD. Krishtal VS. Kal’chenko VI. Zh. Obshch. Khim. 1980; 50: 1288
  • 21 Köckritz A. Schnell M. Phosphorus, Sulfur Silicon, Relat. Elem. 1992; 73: 185
  • 22 Motoyoshiya J. Teranishi A. Mikoshiba R. Yamamoto I. Gotho H. Enda J. Ohshiro Y. Agawa T. J. Org. Chem. 1980; 45: 5385
  • 23 Svintsitskaya NI. Dogadina AV. Trifonov RE. Synlett 2016; 27: 241
  • 24 Leonov AA. Ph.D. Dissertation . Leningrad State Institute of Technology; USSR: 1984
  • 26 N-Aryl-C-phosphonoacetamidines 3a–s; General Procedure The appropriate aniline 2as (2 mmol) was added to a mixture of diisopropyl (chloroethynyl)phosphonate (1; 1 mmol) and K2CO3 (1 mmol) in anhyd acetonitrile (10 mL) at r.t., and the mixture was stirred vigorously under reflux for 5–25 h. When the reaction was complete, the mixture was filtered and concentrated, and the residue was crystallized from hexane. Diisopropyl {(2E)-2-[(4-Fluorophenyl)amino]-2-[(4-fluorophenyl)imino]ethyl}phosphonate (3e) White needle crystals; yield: 332 mg (81%); mp 104–106 °C. IR (KBr): 995.27 (P–O–C), 1226.73 (P=O), 1500.62 (C=N) cm–1. 1H NMR (400.13 MHz, DMSO-d 6): δ = 1.16 (d, 3 J HH = 6.1 Hz, 6 H, CH3), 1.21 (d, 3 J HH = 6.2 Hz, 6 H, CH3), 2.92 (d, 2 J HP = 21.8 Hz, 2 H, CH2P), 4.53 (m, 3 J HH = 6.1 Hz, 3 J HP = 12.4 Hz, 1 H, CHOP), 4.54 (m, 3 J HH = 6.1 Hz, 3 J HP = 14.0 Hz, 1 H, CHOP), 6.82 [m, 3 J HH = 8.8 Hz, 1 H, o-CH, Ar(NH)], 6.83 [m, 3 J HH = 8.8 Hz, 1 H, o-CH, Ar(NH)], 7.09 (m, 3 J HH = 9.1 Hz, 4 H, m-CH, Ar), 7.73 [m, 3 J HH = 9.2 Hz, 1 H, o-CH, Ar(N=)], 7.75 [m, 3 J HH = 9.2 Hz, 1 H, o-CH, Ar(N=)], 8.66 (s, 1 H, NH). 13C NMR (100.61 MHz, DMSO-d 6): δ = 23.97 (d, 3 J CP = 4.4 Hz, CH3), 24.11 (d, 3 J CP = 4.4 Hz, CH3), 30.25 (d, 1 J CP = 133.5 Hz, CH2P), 70.98 [d, 2 J CP = 6.6 Hz, (OCH)2P], 115.38 [d, 2 J CF = 21.3 Hz, m-CH, Ar(NH)], 115.59 [d, 2 J CF = 22.0 Hz, m-CH, Ar(N=)], 121.02 [d, 3 J CF = 7.3 Hz, o-CH, Ar(NH)], 123.50 [d, 3 J CF = 8.0 Hz, o-CH, Ar(N=)], 137.57 (d, 4 J CF = 1.5 Hz, C-ipso-N=), 146.67 (d, 4 J CF = 1.5 Hz, C-ipso-NH), 148.09 (d, CH2 C, 2 J CP = 7.3 Hz), 157.62 [d, 1 J CF = 239.1 Hz, CF, Ar(NH)], 158.40 [d, 1 J CF = 237.6 Hz, CF, Ar(N=)]. 31P NMR (161.98 MHz, DMSO-d 6): δ = 20.63. 19F NMR (376.50 MHz, DMSO-d 6): δ = –122.72 [F, Ar(NH)], –121.19 [F, Ar(N=)]. ESI-HRMS: m/z [M + H]+ calcd for C20H26F2N2O3P: 411.1660; found: 411.1644.
  • 27 CCDC 1505945 and CCDC 1518068 contain the supplementary crystallographic data for compounds 3k and 3l, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.