Synlett 2018; 29(07): 933-937
DOI: 10.1055/s-0036-1591919
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Symmetrical N-Aryl-C-phosphonoacetamidines

Elena B. Erkhitueva
a   Saint Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg 199034, Russian Federation
,
Taras L. Panikorovskii
a   Saint Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg 199034, Russian Federation
,
Nataly I. Svintsitskaya*
b   Saint Petersburg State Institute of Technology (Technical University), Moskovskii pr. 26, St. Petersburg 190013, Russian Federation   Email: nsvincickaya@mail.ru
,
Rostislav Е. Trifonov
a   Saint Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg 199034, Russian Federation
b   Saint Petersburg State Institute of Technology (Technical University), Moskovskii pr. 26, St. Petersburg 190013, Russian Federation   Email: nsvincickaya@mail.ru
,
Аlbina V. Dogadina
b   Saint Petersburg State Institute of Technology (Technical University), Moskovskii pr. 26, St. Petersburg 190013, Russian Federation   Email: nsvincickaya@mail.ru
› Author Affiliations
This work was financially supported by the Russian Foundation for Basic Research (Grant no. 16-03-00474).
Further Information

Publication History

Received: 05 December 2017

Accepted after revision: 04 January 2018

Publication Date:
06 February 2018 (online)


Abstract

An efficient synthesis of a series of novel symmetrical N-aryl-C-phosphonoacetamidines through reaction of diisopropyl (chloroethynyl)phosphonate with primary aryl amines was developed. This procedure tolerates a wide range of functional groups and has a good atom economy. The (E)-isomer was the major product that crystallized preferentially over the (Z)-isomer.

Supporting Information

 
  • References and Notes

    • 1a Gautier J.-A. Miocque M. Combet Farnoux C. In The Chemistry of Amidines and Imidates . Patai S. Wiley; London: 1975
    • 1b Boyd GV. In The Chemistry of Amidines and Imidates . Vol. 2. Patai S. Rappoport Z. Wiley; London: 1991: 367
    • 2a Dunn PJ. In Comprehensive Organic Functional Group Transformations . Vol. 5. Katritzky AR. Meth-Cohn O. Rees CW. Pergamon; Amsterdam: 1995: 741
    • 2b Ishikawa T. Kumamoto T. In Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts. Ishikawa T. Wiley; Chichester: 2009: 49
    • 2c Aly AA. Nour El-Din AM. ARKIVOC 2008; (i): 153
    • 3a Barker J. Kilner M. Coord. Chem. Rev. 1994; 133: 219
    • 3b Edelmann FT. Chem. Soc. Rev. 2009; 38: 2253
    • 3c Edelmann FT. Adv. Organomet. Chem. 2008; 57: 183
    • 4a Taylor JE. Bull SD. Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109
    • 4b Nagasawa K. In Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organo­catalysts. Ishikawa T. Wiley; Chichester: 2009: 211
    • 5a Guile SD. Alcaraz L. Birkinshaw TN. Bowers KC. Ebden MR. Furber M. Stocks MJ. J. Med. Chem. 2009; 52: 3123
    • 5b Greenhill JV. Lue P. Prog. Med. Chem. 1993; 30: 203
    • 5c Caron S. Wei L. Douville J. Ghosh A. J. Org. Chem. 2010; 75: 945
    • 5d Causey CP. Jones JE. Slack JL. Kamei D. Jones JE. Jr. Subramanian V. Knuckley B. Ebrahimi P. Chumanevich AA. Luo Y. Hashimoto H. Sato M. Hofseth LJ. Thompson PR. J. Med. Chem. 2011; 54: 6919
    • 5e Marzano C. Mazzega Sbovata S. Gandin V. Colavito D. Del Giudice E. Michelin RA. Venzo A. Seraglia R. Benetollo F. Schiavon M. Bertani R. J. Med. Chem. 2010; 53: 6210
    • 6a Kantin G. Krasavin M. Curr. Org. Chem. 2016; 20: 1370
    • 6b Ostrowska K. Kolasa A. In Science of Synthesis . Vol. 22, Chap. 22.4.9. Thieme; Stuttgart: 2005: 379
  • 7 Kort ME. Drizin I. Gregg RJ. Scanio MJ. C. Shi L. Gross MF. Atkinson RN. Johnson MS. Pacofsky GJ. Thomas JB. Carroll WA. Krambis MJ. Liu D. Shieh C.-C. Zhang X. Hernandez G. Mikusa JP. Zhong C. Joshi S. Honore P. Roeloffs R. Marsh KC. Murray BP. Liu J. Werness S. Faltynek CR. Krafte DS. Jarvis MF. Chapman ML. Marron BE. J. Med. Chem. 2008; 51: 407
    • 8a Renton P. Green B. Maddaford S. Rakhit S. Andrews JS. ACS Med. Chem. Lett. 2012; 3: 227
    • 8b Annedi SC. Maddaford SP. Mladenova G. Ramnauth J. Rakhit S. Andrews JS. Lee DK. H. Zang D. Porreca F. Bunton D. Christie L. J. Med. Chem. 2011; 54: 7408
    • 9a Wiglenda T. Ott I. Kircher B. Schumacher P. Schuster D. Langer T. Gust R. J. Med. Chem. 2005; 48: 6516
    • 9b Kuethe JT. Childers KG. Humphrey GR. Journet M. Peng Z. Org. Process Res. Dev. 2008; 12: 1201
  • 10 Brasche G. Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
  • 11 Ma B. Wang Y. Peng J. Zhu Q. J. Org. Chem. 2011; 76: 6362
    • 12a Kumar V. Mohan C. Gupta M. Mahajan MP. Tetrahedron 2005; 61: 3533
    • 12b Wang Y. Wang H. Peng J. Zhu Q. Org. Lett. 2011; 13: 4604
    • 12c McGowan MA. McAvoy CZ. Buchwald SL. Org. Lett. 2012; 14: 3800
    • 13a Karl DM. Nature 2000; 406: 31
    • 13b George A. Veis A. Chem. Rev. 2008; 108: 4670
    • 15a Chen X. Kopecky DJ. Mihalic J. Jeffries S. Min X. Heath J. Deignan J. Lai S. Fu Z. Guimaraes C. Shen S. Li S. Johnstone S. Thibault S. Xu H. Cardozo M. Shen W. Walker N. Kayser F. Wang Z. J. Med. Chem. 2012; 55: 3837
    • 15b Cheng T.-RR. Weinheimer S. Tarbet EB. Jan J.-T. Cheng Y.-SE. Shie J.-J. Chen C.-C. Chen C.-A. Hsieh W.-C. Huang P.-W. Lin W.-H. Wang S.-Y. Fang J.-M. Hu OY.-P. Wong C.-H. J. Med. Chem. 2012; 55: 8657
    • 15c Dang Q. Liu Y. Cashion DK. Kasibhatla SR. Jiang T. Taplin F. Jacintho JD. Li H. Sun Z. Fan Y. DaRe J. Tian F. Li W. Gibson T. Lemus R. van Poelje PD. Potter SC. Erion MD. J. Med. Chem. 2011; 54: 153
    • 15d Alexandre F. Amador A. Bot S. Caillet C. Convard T. Jakubik J. Musiu C. Poddesu B. Vargiu L. Liuzzi M. Roland A. Seifer M. Standring D. Storer R. Dousson CB. J. Med. Chem. 2011; 54: 392
    • 16a Zhang A. Sun J. Lin C. Hu X. Liu WJ. Agric. Food Chem. 2014; 62: 1477
    • 16b Zhang A. Xie X. Ye J. Lin C. Hu X. Environ. Chem. Lett. 2011; 9: 369
    • 17a Toy AD. F. Walsh EN. Phosphorus Chemistry in Everyday Living . American Chemical Society; Washington: 1987. 2nd ed.
    • 17b Handbook of Organophosphorus Chemistry . Engel RM. Dekker; New York: 1992
    • 17c Yudelevich VI. Ionin BI. Organophosphorus Drugs . Thesa; St. Petersburg: 1995
    • 17d Quin LD. A Guide to Organophosphorus Chemistry . Wiley-Interscience; New York: 2000
    • 18a Rossi E. Calabrese D. Parma F. Tetrahedron 1991; 47: 5819
    • 18b Palacios F. Ochoa de Retana AM. Pagalday J. Eur. J. Org. Chem. 2003; 913
    • 18c Shishkin VE. Mednikov EV. Shevchenko MA. Anishchenko OV. Popov YuV. Gurba EV. Bang CN. Russ. J. Gen. Chem. 2010; 80: 60
    • 18d Omrani R. Efrit ML. Ben Akacha A. Phosphorus Sulfur Silicon Relat. Elem. 2015; 190: 2291
    • 18e Shishkin VE. Mednikov EV. Popov YuV. Shevchenko MA. Anishchenko OV. Gurba EV. Russ. J. Gen. Chem. 2014; 84: 1130
    • 19a Panarina AE. Aleksandrova AV. Dogadina AV. Ionin BI. Russ. J. Gen. Chem. 2005; 75: 3
    • 19b Aleksandrova AV. Dogadina AV. Ionin BI. Russ. J. Gen. Chem. 2005; 75: 1664
  • 20 Sinitsa AD. Krishtal VS. Kal’chenko VI. Zh. Obshch. Khim. 1980; 50: 1288
  • 21 Köckritz A. Schnell M. Phosphorus, Sulfur Silicon, Relat. Elem. 1992; 73: 185
  • 22 Motoyoshiya J. Teranishi A. Mikoshiba R. Yamamoto I. Gotho H. Enda J. Ohshiro Y. Agawa T. J. Org. Chem. 1980; 45: 5385
  • 23 Svintsitskaya NI. Dogadina AV. Trifonov RE. Synlett 2016; 27: 241
  • 24 Leonov AA. Ph.D. Dissertation . Leningrad State Institute of Technology; USSR: 1984
    • 25a Svintsitskaya NI. Dogadina AV. Ionin BI. Russ. J. Gen. Chem. 2011; 81: 628
    • 25b Svintsitskaya NI. Dogadina AV. Starova GL. Trifonov RE. Tetrahedron Lett. 2014; 55: 5381
  • 26 N-Aryl-C-phosphonoacetamidines 3a–s; General Procedure The appropriate aniline 2as (2 mmol) was added to a mixture of diisopropyl (chloroethynyl)phosphonate (1; 1 mmol) and K2CO3 (1 mmol) in anhyd acetonitrile (10 mL) at r.t., and the mixture was stirred vigorously under reflux for 5–25 h. When the reaction was complete, the mixture was filtered and concentrated, and the residue was crystallized from hexane. Diisopropyl {(2E)-2-[(4-Fluorophenyl)amino]-2-[(4-fluorophenyl)imino]ethyl}phosphonate (3e) White needle crystals; yield: 332 mg (81%); mp 104–106 °C. IR (KBr): 995.27 (P–O–C), 1226.73 (P=O), 1500.62 (C=N) cm–1. 1H NMR (400.13 MHz, DMSO-d 6): δ = 1.16 (d, 3 J HH = 6.1 Hz, 6 H, CH3), 1.21 (d, 3 J HH = 6.2 Hz, 6 H, CH3), 2.92 (d, 2 J HP = 21.8 Hz, 2 H, CH2P), 4.53 (m, 3 J HH = 6.1 Hz, 3 J HP = 12.4 Hz, 1 H, CHOP), 4.54 (m, 3 J HH = 6.1 Hz, 3 J HP = 14.0 Hz, 1 H, CHOP), 6.82 [m, 3 J HH = 8.8 Hz, 1 H, o-CH, Ar(NH)], 6.83 [m, 3 J HH = 8.8 Hz, 1 H, o-CH, Ar(NH)], 7.09 (m, 3 J HH = 9.1 Hz, 4 H, m-CH, Ar), 7.73 [m, 3 J HH = 9.2 Hz, 1 H, o-CH, Ar(N=)], 7.75 [m, 3 J HH = 9.2 Hz, 1 H, o-CH, Ar(N=)], 8.66 (s, 1 H, NH). 13C NMR (100.61 MHz, DMSO-d 6): δ = 23.97 (d, 3 J CP = 4.4 Hz, CH3), 24.11 (d, 3 J CP = 4.4 Hz, CH3), 30.25 (d, 1 J CP = 133.5 Hz, CH2P), 70.98 [d, 2 J CP = 6.6 Hz, (OCH)2P], 115.38 [d, 2 J CF = 21.3 Hz, m-CH, Ar(NH)], 115.59 [d, 2 J CF = 22.0 Hz, m-CH, Ar(N=)], 121.02 [d, 3 J CF = 7.3 Hz, o-CH, Ar(NH)], 123.50 [d, 3 J CF = 8.0 Hz, o-CH, Ar(N=)], 137.57 (d, 4 J CF = 1.5 Hz, C-ipso-N=), 146.67 (d, 4 J CF = 1.5 Hz, C-ipso-NH), 148.09 (d, CH2 C, 2 J CP = 7.3 Hz), 157.62 [d, 1 J CF = 239.1 Hz, CF, Ar(NH)], 158.40 [d, 1 J CF = 237.6 Hz, CF, Ar(N=)]. 31P NMR (161.98 MHz, DMSO-d 6): δ = 20.63. 19F NMR (376.50 MHz, DMSO-d 6): δ = –122.72 [F, Ar(NH)], –121.19 [F, Ar(N=)]. ESI-HRMS: m/z [M + H]+ calcd for C20H26F2N2O3P: 411.1660; found: 411.1644.
  • 27 CCDC 1505945 and CCDC 1518068 contain the supplementary crystallographic data for compounds 3k and 3l, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.