RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2018; 29(08): 1061-1064
DOI: 10.1055/s-0036-1591951
DOI: 10.1055/s-0036-1591951
letter
Synthesis of 1,2-Fused Bicyclic Imidazolidin-4-ones by Redox-Neutral Cyclization Reaction of Cyclic Amines and α-Ketoamides
We are grateful to the National Natural Science Foundation of China (21402137) for financial support.Weitere Informationen
Publikationsverlauf
Received: 25. November 2017
Accepted after revision: 08. Februar 2018
Publikationsdatum:
07. März 2018 (online)
Abstract
A redox annulation reaction of cyclic amines and α-ketoamides was developed. A variety of 1,2-fused bicyclic imidazolidin-4-ones were synthesized in moderate to good yields from cyclic amines by redox-neutral α-C–H functionalization.
-
References and Notes
- 1a Kudale AA. Anaspure P. Goswami F. Voss M. Tetrahedron Lett. 2014; 55: 7219
- 1b Vo C.-VT. Bode JW. J. Org. Chem. 2014; 79: 2809
- 1c Mitchell EA. Peschiulli A. Lefevre N. Meerpoel L. Maes BU. W. Chem. Eur. J. 2012; 18: 10092
- 1d Campos KR. Chem. Soc. Rev. 2007; 36: 1069
- 1e Mitchinson A. Nadin A. J. Chem. Soc., Perkin Trans. 1 2000; 2862
- 2a Seidel D. Acc. Chem. Res. 2015; 48: 317
- 2b Wang L. Xiao J. Adv. Synth. Catal. 2014; 356: 1137
- 2c Seidel D. Org. Chem. Front. 2014; 1: 426
- 2d Peng B. Maulide N. Chem. Eur. J. 2013; 19: 13274
- 2e Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 2f Beatty JW. Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474
- 2g Qin Y. Lv J. Luo S. Tetrahedron Lett. 2014; 55: 551
- 2h Girard SA. Knauber T. Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 2i Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
- 2j Mahato S. Jana CK. Chem. Rec. 2016; 16: 1477
- 2k Jones KM. Klussmann M. Synlett 2012; 159
- 3a Zhang C. De CK. Mal R. Seidel D. J. Am. Chem. Soc. 2008; 130: 416
- 3b Dieckmann A. Richers MT. Platonova AY. Zhang C. Seidel D. J. Org. Chem. 2013; 78: 4132
- 4a Zhu Z. Seidel D. Org. Lett. 2017; 19: 2841
- 4b Purkait A. Roy SK. Srivastava HK. Jana CK. Org. Lett. 2017; 19: 2540
- 4c Zhen L. Wang J. Xu Q.-L. Sun H. Wen X. Wang G. Org. Lett. 2017; 19: 1566
- 4d Li J. Qin C. Yu Y. Fan H. Fu Y. Li H. Wang W. Adv. Synth. Catal. 2017; 359: 2191
- 4e Rong H.-J. Yao J.-J. Li J.-K. Qu J. J. Org. Chem. 2017; 82: 5557
- 4f Zhu Z. Seidel D. Org. Lett. 2016; 18: 631
- 4g Zheng K.-L. Shu W.-M. Ma J.-R. Wu Y.-D. Wu A.-X. Org. Lett. 2016; 18: 3526
- 4h Chen W. Seidel D. Org. Lett. 2016; 18: 1024
- 4i Ma L. Paul A. Breugst M. Seidel D. Chem. Eur. J. 2016; 22: 18179
- 4j Kumar M. Kaur BP. Chimni SS. Chem. Eur. J. 2016; 22: 9948
- 4k Kang Y. Chen W. Breugst M. Seidel D. J. Org. Chem. 2015; 80: 9628
- 4l Yi F. Su J. Zhang S. Yi W. Zhang L. Eur. J. Org. Chem. 2015; 7360
- 4m Shao G. He Y. Xu Y. Chen J. Yu J. Cao R. Eur. J. Org. Chem. 2015; 4615
- 4n Ma L. Seidel D. Chem. Eur. J. 2015; 21: 12908
- 4o Haldar S. Roy SK. Maity B. Koley D. Jana CK. Chem. Eur. J. 2015; 21: 15290
- 4p Lin W. Ma S. Org. Chem. Front. 2014; 1: 338
- 4q Li J. Wang H. Sun J. Yang Y. Liu L. Org. Biomol. Chem. 2014; 12: 2523
- 4r Richers MT. Breugst M. Platonova AY. Ullrich A. Dieckmann A. Houk KN. Seidel D. J. Am. Chem. Soc. 2014; 136: 6123
- 4s Jurberg ID. Peng B. Wöstefeld E. Wasserloos M. Maulide N. Angew. Chem. Int. Ed. 2012; 51: 1950
- 4t Haibach MC. Deb I. De CK. Seidel D. J. Am. Chem. Soc. 2011; 133: 2100
- 5a Gauthier MP. Michaux C. Rolin S. Vastersaegher X. Leval X. De Julemont F. Pochet L. Masereel B. Bioorg. Med. Chem. 2006; 14: 918
- 5b Araujo MJ. Bom J. Capela R. Casimiro C. Chambel P. Gomes P. Iley J. Lopes F. Morais J. Moreira R. De Olveira E. Do Rosario V. Vale N. J. Med. Chem. 2005; 48: 888
- 5c Gomes P. Araujo MJ. Rodrigues M. Vale N. Azevedo Z. Iley J. Chambel P. Morais J. Moreira R. Tetrahedron 2004; 60: 5551
- 6 Wu J. Jiang H. Yang J. Jin Z. Chen D. Tetrahedron Lett. 2017; 58: 546
- 7 During the preparation of this manuscript, a similar reaction using mainly tetrahydroisoquinoline appeared: Zhu Z. Lv X. Anesini JE. Seidel D. Org. Lett. 2017; 19: 6424
- 8 The nitrogen-attached proton of N-alkyl-substituted α-ketoamide is less acidic than that of N-aryl-substituted α-ketoamide. The addition of acetic acid was believed to facilitate the intramolecular proton transfer of the azomethine ylide generated from the reaction of N-alkyl-substituted α-ketoamide and pyrrolidine (see ref. 4r).
- 9 Typical Procedure for the Synthesis of 3aAn oven-dried reaction vessel was charged with α-ketoamide 1a (112.6 mg, 0.5 mmol), pyrrolidine (2a) (62.0 μL, 0.75 mmol,), and toluene (1.5 mL) under argon. The vessel was sealed and heated to 130 °C for 10 h. The reaction solution was cooled to room temperature and the volatiles were removed under vacuum. Purification by flash column chromatography (petroleum ether/ethyl acetate, 8:1) afforded the desired bicyclic imidazolidin-4-one product 3a (112.7 mg, 81%) as a pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.59 (d, J = 7.0 Hz, 2 H), 7.53–7.47 (m, 2 H), 7.40–7.32 (m, 4 H), 7.31–7.24 (m, 1 H), 7.20–7.14 (m, 1 H), 5.53 (dd, J = 6.3, 3.8 Hz, 1 H), 4.55 (s, 1 H), 3.35–3.45 (m, 1 H), 2.98–2.85 (m, 1 H), 2.37–2.26 (m, 1 H), 2.06–1.79 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.6, 138.1, 137.2, 129.0, 128.5, 127.7, 126.8, 125.2, 121.2, 79.9, 70.8, 55.5, 31.4, 24.1.
Selected recent reviews:
Recent examples: