Synlett 2018; 29(08): 1061-1064
DOI: 10.1055/s-0036-1591951
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 1,2-Fused Bicyclic Imidazolidin-4-ones by Redox-Neutral Cyclization Reaction of Cyclic Amines and α-Ketoamides

Yi Liu
School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, Zhejiang, P. R. of China   eMail: jsw79@sina.com
,
Jiashou Wu*
School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, Zhejiang, P. R. of China   eMail: jsw79@sina.com
,
Zhengneng Jin
School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, Zhejiang, P. R. of China   eMail: jsw79@sina.com
,
Huajiang Jiang
School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, Zhejiang, P. R. of China   eMail: jsw79@sina.com
› Institutsangaben
We are grateful to the National Natural Science Foundation of China (21402137) for financial support.
Weitere Informationen

Publikationsverlauf

Received: 25. November 2017

Accepted after revision: 08. Februar 2018

Publikationsdatum:
07. März 2018 (online)


Abstract

A redox annulation reaction of cyclic amines and α-ketoamides was developed. A variety of 1,2-fused bicyclic imidazolidin-4-ones were synthesized in moderate to good yields from cyclic amines by ­redox-neutral α-C–H functionalization.

 
  • References and Notes

    • 1a Kudale AA. Anaspure P. Goswami F. Voss M. Tetrahedron Lett. 2014; 55: 7219
    • 1b Vo C.-VT. Bode JW. J. Org. Chem. 2014; 79: 2809
    • 1c Mitchell EA. Peschiulli A. Lefevre N. Meerpoel L. Maes BU. W. Chem. Eur. J. 2012; 18: 10092
    • 1d Campos KR. Chem. Soc. Rev. 2007; 36: 1069
    • 1e Mitchinson A. Nadin A. J. Chem. Soc., Perkin Trans. 1 2000; 2862

      Selected recent reviews:
    • 2a Seidel D. Acc. Chem. Res. 2015; 48: 317
    • 2b Wang L. Xiao J. Adv. Synth. Catal. 2014; 356: 1137
    • 2c Seidel D. Org. Chem. Front. 2014; 1: 426
    • 2d Peng B. Maulide N. Chem. Eur. J. 2013; 19: 13274
    • 2e Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 2f Beatty JW. Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474
    • 2g Qin Y. Lv J. Luo S. Tetrahedron Lett. 2014; 55: 551
    • 2h Girard SA. Knauber T. Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 2i Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 2j Mahato S. Jana CK. Chem. Rec. 2016; 16: 1477
    • 2k Jones KM. Klussmann M. Synlett 2012; 159
    • 3a Zhang C. De CK. Mal R. Seidel D. J. Am. Chem. Soc. 2008; 130: 416
    • 3b Dieckmann A. Richers MT. Platonova AY. Zhang C. Seidel D. J. Org. Chem. 2013; 78: 4132

      Recent examples:
    • 4a Zhu Z. Seidel D. Org. Lett. 2017; 19: 2841
    • 4b Purkait A. Roy SK. Srivastava HK. Jana CK. Org. Lett. 2017; 19: 2540
    • 4c Zhen L. Wang J. Xu Q.-L. Sun H. Wen X. Wang G. Org. Lett. 2017; 19: 1566
    • 4d Li J. Qin C. Yu Y. Fan H. Fu Y. Li H. Wang W. Adv. Synth. Catal. 2017; 359: 2191
    • 4e Rong H.-J. Yao J.-J. Li J.-K. Qu J. J. Org. Chem. 2017; 82: 5557
    • 4f Zhu Z. Seidel D. Org. Lett. 2016; 18: 631
    • 4g Zheng K.-L. Shu W.-M. Ma J.-R. Wu Y.-D. Wu A.-X. Org. Lett. 2016; 18: 3526
    • 4h Chen W. Seidel D. Org. Lett. 2016; 18: 1024
    • 4i Ma L. Paul A. Breugst M. Seidel D. Chem. Eur. J. 2016; 22: 18179
    • 4j Kumar M. Kaur BP. Chimni SS. Chem. Eur. J. 2016; 22: 9948
    • 4k Kang Y. Chen W. Breugst M. Seidel D. J. Org. Chem. 2015; 80: 9628
    • 4l Yi F. Su J. Zhang S. Yi W. Zhang L. Eur. J. Org. Chem. 2015; 7360
    • 4m Shao G. He Y. Xu Y. Chen J. Yu J. Cao R. Eur. J. Org. Chem. 2015; 4615
    • 4n Ma L. Seidel D. Chem. Eur. J. 2015; 21: 12908
    • 4o Haldar S. Roy SK. Maity B. Koley D. Jana CK. Chem. Eur. J. 2015; 21: 15290
    • 4p Lin W. Ma S. Org. Chem. Front. 2014; 1: 338
    • 4q Li J. Wang H. Sun J. Yang Y. Liu L. Org. Biomol. Chem. 2014; 12: 2523
    • 4r Richers MT. Breugst M. Platonova AY. Ullrich A. Dieckmann A. Houk KN. Seidel D. J. Am. Chem. Soc. 2014; 136: 6123
    • 4s Jurberg ID. Peng B. Wöstefeld E. Wasserloos M. Maulide N. Angew. Chem. Int. Ed. 2012; 51: 1950
    • 4t Haibach MC. Deb I. De CK. Seidel D. J. Am. Chem. Soc. 2011; 133: 2100
    • 5a Gauthier MP. Michaux C. Rolin S. Vastersaegher X. Leval X. De Julemont F. Pochet L. Masereel B. Bioorg. Med. Chem. 2006; 14: 918
    • 5b Araujo MJ. Bom J. Capela R. Casimiro C. Chambel P. Gomes P. Iley J. Lopes F. Morais J. Moreira R. De Olveira E. Do Rosario V. Vale N. J. Med. Chem. 2005; 48: 888
    • 5c Gomes P. Araujo MJ. Rodrigues M. Vale N. Azevedo Z. Iley J. Chambel P. Morais J. Moreira R. Tetrahedron 2004; 60: 5551
  • 6 Wu J. Jiang H. Yang J. Jin Z. Chen D. Tetrahedron Lett. 2017; 58: 546
  • 7 During the preparation of this manuscript, a similar reaction using mainly tetrahydroisoquinoline appeared: Zhu Z. Lv X. Anesini JE. Seidel D. Org. Lett. 2017; 19: 6424
  • 8 The nitrogen-attached proton of N-alkyl-substituted α-ketoamide is less acidic than that of N-aryl-substituted α-ketoamide. The addition of acetic acid was believed to facilitate the intramolecular proton transfer of the azomethine ylide generated from the reaction of N-alkyl-substituted α-ketoamide and pyrrolidine (see ref. 4r).
  • 9 Typical Procedure for the Synthesis of 3aAn oven-dried reaction vessel was charged with α-ketoamide 1a (112.6 mg, 0.5 mmol), pyrrolidine (2a) (62.0 μL, 0.75 mmol,), and toluene (1.5 mL) under argon. The vessel was sealed and heated to 130 °C for 10 h. The reaction solution was cooled to room temperature and the volatiles were removed under vacuum. Purification by flash column chromatography (petroleum ether/ethyl acetate, 8:1) afforded the desired bicyclic imidazolidin-4-one product 3a (112.7 mg, 81%) as a pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.59 (d, J = 7.0 Hz, 2 H), 7.53–7.47 (m, 2 H), 7.40–7.32 (m, 4 H), 7.31–7.24 (m, 1 H), 7.20–7.14 (m, 1 H), 5.53 (dd, J = 6.3, 3.8 Hz, 1 H), 4.55 (s, 1 H), 3.35–3.45 (m, 1 H), 2.98–2.85 (m, 1 H), 2.37–2.26 (m, 1 H), 2.06–1.79 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.6, 138.1, 137.2, 129.0, 128.5, 127.7, 126.8, 125.2, 121.2, 79.9, 70.8, 55.5, 31.4, 24.1.