Subscribe to RSS
DOI: 10.1055/s-0036-1591982
Assessing the Activity of Lewis Bases Organocatalysts in Halonium-Induced Carbocyclization Reactions
This work was supported by a grant (ANR-13-JS07-0010) from the Agence Nationale de la Recherche. This work was also supported by the Ministère de l’Education et de la Recherche and the Centre National de la Recherche Scientifique (CNRS).Publication History
Received: 21 February 2018
Accepted after revision: 14 March 2018
Publication Date:
09 April 2018 (online)
Abstract
Lewis bases were evaluated as catalysts for halocarbocyclization reactions of alkynylstyrenes and a cinnamylaniline derivative. Phosphines and phosphorus chalcogenides exhibited high activity for the conversion of alkynylstyrenes in the presence of N-halosuccinimides with up to a 30-fold increase of the initial reaction rate with respect to the background reaction. Phosphorus sulfides and selenides showed the best catalytic activity for the iodocarbocyclization of a cinnamylaniline derivative in the presence of diiodohydantoin. An asymmetric variant of the iodocarbocyclization reaction of an alkynylstyrene using a chiral phosphorus selenide resulted in a modest enantioselectivity.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591982.
- Supporting Information
-
References and Notes
- 1a Gribble GW. Acc. Chem. Res. 1998; 31: 141
- 1b Gribble GW. Chemosphere 2003; 52: 289
- 1c Gribble GW. J. Chem. Educ. 2004; 81: 1441
- 1d Gribble GW. Naturally Occurring Organohalogen Compounds – A: Comprehensive Update. In Progress in the Chemistry of Organic Natural Compounds. Vol. 91. Kinghorn AD. Falk H. Kobayashi J. Springer; Wien: 2010
- 1e Paul C. Pohnert G. Nat. Prod. Rep. 2011; 28: 186
- 1f Winterton N. Green Chem. 2000; 2: 173
- 2 As an example, replacement of the chlorine atoms by hydrogens in the antibiotic vancomycin induces a decrease of the antibacterial activity of up to 70%, see: Harris CM. Kannan R. Kopecka H. Harris TM. J. Am. Chem. Soc. 1985; 107: 6652
- 3a Dowle MD. Davies DI. Chem. Soc. Rev. 1979; 8: 171
- 3b Ranganathan S. Muraleedharan KM. Vaish NK. Jayaraman N. Tetrahedron 2004; 60: 5273
- 4 Harding KE. Tiner TH. In Comprehensive Organic Synthesis . Trost BM. Pergamon Press; New York: 1991. 4 363
- 5 Chemler SR. Bovino MT. ACS Catal. 2013; 3: 1076
- 6a Chambers RD. James SR. In Comprehensive Organic Chemistry . Vol. 1. Stoddart JF. Pergamon Press; Oxford: 1979: 493
- 6b Cresswell AJ. Eey ST. C. Denmark SE. Angew. Chem. Int. Ed. 2015; 54: 15642
- 7 For a recent review on electrophilic halogen induced heterocyclic synthesis, see: Godoi B. Schumacher RF. Zeni G. Chem. Rev. 2011; 111: 2937
- 8a Snyder SA. Treitler DS. Brucks AP. Aldrichimica Acta 2011; 44: 27
- 8b Denmark SE. Kuester WE. Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938
- 9a Yamamoto Y. Gridnev ID. Patil NT. Jin T. Chem. Commun. 2009; 5075
- 9b Hummel S. Kirsch SF. Beilstein J. Org. Chem. 2011; 7: 847
- 10 Palisse A. Kirsch SF. Org. Biomol. Chem. 2012; 10: 8041
- 11a Barluenga J. González J.-M. Campos PJ. Asensio G. Angew. Chem., Int. Ed. Engl. 1988; 27: 1546
- 11b Goldfinger MB. Crawford KB. Swager TM. J. Am. Chem. Soc. 1997; 119: 4578
- 11c Zhang X. Larock RC. J. Am. Chem. Soc. 2005; 127: 12230
- 11d Barluenga J. Trincado M. Marco-Arias M. Ballesteros A. Rubio E. González J.-M. Chem. Commun. 2005; 2008
- 11e Tang B.-X. Tang D.-JS. Yu Q.-F. Zhang Y.-H. Liang Y. Zhong P. Li J.-H. Org. Lett. 2008; 10: 1063
- 12a Cossy J. Thellend A. Tetrahedron Lett. 1990; 31: 1427
- 12b Kitagawa O. Inoue T. Hirano K. Taguchi T. J. Org. Chem. 1993; 58: 3106
- 12c Bi H.-P. Guo L.-N. Duan X.-H. Gou F.-R. Huang S.-H. Liu X.-Y. Liang Y.-M. Org. Lett. 2007; 9: 397
- 12d Barluenga J. Palomas D. Rubio E. González JM. Org. Lett. 2007; 9: 2823
- 12e Ali Z. Wirth T. Org. Lett. 2009; 11: 229
- 13a Schreiner PR. Prall M. Lutz V. Angew. Chem. Int. Ed. 2003; 42: 5757
- 13b Matsumoto S. Takase K. Ogura K. J. Org. Chem. 2008; 73: 1721
- 13c Lim C. Rao S. Shin S. Synlett 2010; 368
- 13d Crone B. Kirsch SF. Umland K.-D. Angew. Chem. Int. Ed. 2010; 49: 4661
- 13e Sanz R. Martinez A. Garcia-Garcia P. Fernandez-Rodriguez MA. Rashid MA. Rodriguez F. Chem. Commun. 2010; 46: 7427
- 13f Pradal A. Nasr A. Toullec PY. Michelet V. Org. Lett. 2010; 12: 5222
- 13g Harschneck T. Kirsch SF. Wegener M. Synlett 2011; 1151
- 13h Huber F. Kirsch SF. J. Org. Chem. 2013; 78: 2780
- 13i Garcia-Garcia P. Sanjuán AM. Rashid MA. Martinez-Cuezva A. Fernandez-Rodriguez MA. Rodriguez F. Sanz R. J. Org. Chem. 2017; 82: 1155
- 14a Anastas PT. Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; New York: 2000
- 14b Anastas PT. Bartlett LB. Kirchhoff MM. Williamson TC. Catal. Today 2000; 55: 11
- 15a Neverov AA. Brown RS. J. Org. Chem. 1998; 63: 5977
- 15b Brown RS. Nagorski RW. Bennet AJ. McClung RE. D. Aarts GH. M. Klobukowski M. McDonalds R. Santarsiero BD. J. Am. Chem. Soc. 1994; 116: 2448
- 16a Snyder SA. Treitler DS. Angew. Chem. Int. Ed. 2009; 48: 7899
- 16b Snyder SA. Treitler DS. Brucks AP. J. Am. Chem. Soc. 2010; 132: 14303
- 17 Kang SH. Lee SB. Park CM. J. Am. Chem. Soc. 2003; 125: 15748
- 18 Huang D. Wang H. Xue F. Guan H. Li L. Peng X. Shi Y. Org. Lett. 2011; 13: 6350
- 19a Veitch GE. Jacobsen EN. Angew. Chem. Int. Ed. 2010; 49: 7332
- 19b Rauniyar V. Lackner AD. Hamilton GL. Toste FD. Science 2011; 334: 1681
- 20 Denmark SE. Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
- 21 Denmark SE. Burk MT. Proc. Natl. Acad. Sci., U.S.A. 2010; 107: 20655
- 22a Maddox SM. Nalbandian CJ. Gustafson JL. Org. Lett. 2015; 17: 1042
- 22b Wong Y.-C. Ke Z. Yeung Y.-Y. Org. Lett. 2015; 17: 4944
- 22c Ke Z. Wong Y.-C. See JY. Yeung Y.-Y. Adv. Synth. Catal. 2016; 358: 1719
- 23a Mellegaard SR. Tunge JA. J. Org. Chem. 2004; 69: 8979
- 23b Mellegaard-Waetzig SR. Wang C. Tunge JA. Tetrahedron 2006; 62: 7191
- 23c Cresswell AJ. Eey ST.-C. Denmark SE. Nat. Chem. 2015; 5: 146
- 23d Balkrishna SJ. Prasad CD. Panini P. Detty MR. Chopra D. Kumar S. J. Org. Chem. 2012; 77: 9541
- 23e Tay DW. Tsoi IT. Er JC. Leung GY. C. Yeung Y.-Y. Org. Lett. 2013; 15: 1310
- 23f Chen F. Tan CK. Yeung Y.-Y. J. Am. Chem. Soc. 2013; 135: 1232
- 23g Cheng YA. Chen T. Tan CK. Heng JJ. Yeung Y.-Y. J. Am. Chem. Soc. 2012; 134: 16492
- 23h Ke Z. Tan CK. Chen F. Yeung Y.-Y. J. Am. Chem. Soc. 2014; 136: 5627
- 23i Zhou L. Tan CK. Jiang X. Chen F. Yeung Y.-Y. J. Am. Chem. Soc. 2010; 132: 15474
- 23j Tan CK. Le C. Yeung Y.-Y. Chem. Commun. 2012; 48: 5793
- 23k Chen J. Zhou L. Tan CK. Yeung Y.-Y. J. Org. Chem. 2012; 77: 999
- 23l Hernándes-Torres G. Tan B. Barbas CF. III. Org. Lett. 2012; 14: 1858
- 24 Sakakura A. Ukai A. Ishihara K. Nature 2007; 445: 900
- 25a Sawamura Y. Nakatsuji H. Sakakura A. Ishihara K. Chem. Sci. 2013; 4: 4181
- 25b Sawamura Y. Nakatsuji H. Akakura M. Sakakura A. Ishihara K. Chirality 2014; 26: 356
- 25c Sawamura Y. Ogura Y. Nakatsuji H. Sakakura A. Ishihara K. Chem. Commun. 2016; 52: 6068
- 26 Samanta RC. Yamamoto H. J. Am. Chem. Soc. 2017; 139: 1460
- 27 Grandclaudon C. Michelet V. Toullec PY. Synlett 2018; 29: 310
- 28a Pradal A. Gladiali S. Michelet V. Toullec PY. Chem. Eur. J. 2014; 20: 7128
- 28b Pradal A. Chen Q. Faudot dit Bel P. Toullec PY. Michelet V. Synlett 2012; 23: 74
- 28c Pradal A. Chao C.-M. Toullec PY. Michelet V. Beilstein J. Org. Chem. 2011; 7: 1021
- 28d Pradal A. Chao C.-M. Vitale MR. Toullec PY. Michelet V. Tetrahedron 2011; 67: 4371
- 28e Toullec PY. Blarre T. Michelet V. Org. Lett. 2009; 11: 2888
- 28f Chao C.-M. Beltrami D. Toullec PY. Michelet V. Chem. Commun. 2009; 6988
- 28g Chao C.-M. Toullec PY. Michelet V. Tetrahedron Lett. 2009; 50: 3719
- 28h Chao C.-M. Vitale M. Toullec PY. Genêt J.-P. Michelet V. Chem. Eur. J. 2009; 15: 1319
- 28i Chao C.-M. Genin E. Toullec PY. Genêt J.-P. Michelet V. J. Organomet. Chem. 2009; 694: 538
- 28j Leseurre L. Chao C.-M. Seki T. Genin E. Toullec P.-Y. Genêt J.-P. Michelet V. Tetrahedron 2009; 65: 1911
- 28k Leseurre L. Toullec PY. Genêt J.-P. Michelet V. Org. Lett. 2007; 9: 4049
- 28l Genin E. Leseurre L. Toullec PY. Genet J.-P. Michelet V. Synlett 2007; 1780
- 28m Toullec PY. Genin E. Leseurre L. Genêt J.-P. Michelet V. Angew. Chem. Int. Ed. 2006; 45: 7427
- 28n Nevado C. Charruault L. Michelet V. Nieto-Oberhuber C. Muñoz MP. Méndez M. Rager M.-N. Genêt J.-P. Echavarren AM. Eur. J. Org. Chem. 2003; 706
- 29 Ashtekar KD. Marzijarani NS. Jaganathan A. Holmes D. Jackson JE. Borhan B. J. Am. Chem. Soc. 2014; 136: 13355
- 30a Nakatsuji H. Sawamura Y. Sakakura A. Ishihara K. Angew. Chem. Int. Ed. 2014; 53: 6974
- 30b Kawato Y. Kubota A. Ono H. Egami H. Hamashima Y. Org. Lett. 2015; 17: 1244
- 31a Cheng YA. Yu WZ. Yeung Y.-Y. Org. Biomol. Chem. 2014; 12: 2333
- 31b Tan CK. Yeung Y.-Y. Chem. Commun. 2013; 49: 7985
- 31c Castellanos A. Fletcher SP. Chem. Eur. J. 2011; 17: 5766
- 31d Chen G. Ma S. Angew. Chem. Int. Ed. 2010; 49: 8306
- 31e Ibrahim H. Togni A. Chem. Commun. 2004; 1147
- 32a Denmark SE. Jaunet A. J. Am. Chem. Soc. 2013; 135: 6419
- 32b Denmark SE. Hartmann E. Kornfilt DJ. P. Wang H. Nat. Chem. 2014; 1056
- 33 Wolstenhulme JR. Rosenqvist J. Lozano O. Ilupeju J. Wurz N. Engle KM. Pidgeon GW. Moore PR. Stanford G. Gouverneur V. Angew. Chem. Int. Ed. 2013; 52: 9796
- 34a Feringa BL. Acc. Chem. Res. 2000; 33: 346
- 34b Teichert JF. Feringa BL. Angew. Chem. Int. Ed. 2010; 49: 2486
- 35 See the Supporting Information for a summary of asymmetric chiral Lewis base-catalyzed iodocyclization of substrates 3 and 15.
For phosphine sulfide catalyzed halogenation reactions, see:
For a seminal contribution on phosphate-catalyzed enantioselective halolactonisation, see:
For a seminal contribution on phosphane-catalyzed enantioselective bromo-O-amidation, see:
For reviews on asymmetric halogenation reactions, see:
For a related enantioselective carbosulfenylation of alkenes in the presence of a chiral phosphorus selenide Lewis base catalyst, see: