Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(07): 974-978
DOI: 10.1055/s-0037-1609149
DOI: 10.1055/s-0037-1609149
letter
Sulfuric Acid-Promoted Oxidation of Benzylic Alcohols to Aromatic Aldehydes in Dimethyl Sulfoxide: An Efficient Metal-Free Oxidation Approach
This research was supported by the Research Council of University of Tehran.Further Information
Publication History
Received: 17 October 2017
Accepted after revision: 18 December 2017
Publication Date:
29 January 2018 (online)
Abstract
An efficient metal-free oxidation of benzylic alcohols to aromatic aldehydes is described. Heating a solution of the benzylic alcohol in DMSO in the presence of H2SO4 afforded the corresponding aldehyde in excellent yield. This oxidation reaction, which proceeds with a short reaction time and no side products, is akin to the Pfitzner–Moffatt oxidation, but without the need for N,N′-dicyclohexylcarbodiimide.
-
References and Notes
- 1a Bowden K. Heilbron IM. Jones ER. H. Weedon BC. L. J. Chem. Soc. 1946; 39
- 1b Heilbron SI. Jones ER. H. Sondheimer F. J. Chem. Soc. 1949; 604
- 2a Collins JC. Hess WW. Frank FJ. Tetrahedron Lett. 1968; 9: 3363
- 2b Collins JC. Hess WW. Org. Synth. Coll. Vol. VI . Wiley; London: 1988: 644
- 3 Corey EJ. Suggs JW. Tetrahedron Lett. 1975; 16: 2647
- 4 Corey EJ. Schmidt G. Tetrahedron Lett. 1979; 20: 399
- 5a Dess DB. Martin JC. J. Org. Chem. 1983; 48: 4155
- 5b Dess DB. Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
- 6a Corey EJ. Palani A. Tetrahedron Lett. 1995; 36: 7945
- 6b Frigerio M. Santagostino M. Sputore S. Palmisano G. J. Org. Chem. 1995; 60: 7272
- 7a Zhdankin VV. Stang PJ. Chem. Rev. 2002; 102: 2523
- 7b Stang PJ. J. Org. Chem. 2003; 68: 2997
- 7c Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
- 8a Brünjes M. Sourkouni-Argirusi G. Kirschning A. Adv. Synth. Catal. 2003; 345: 635
- 8b Liu R. Liang X. Dong C. Hu X. J. Am. Chem. Soc. 2004; 126: 4112
- 8c Gamez P. Arends IW. C. E. Sheldon RA. Reedijk J. Adv. Synth. Catal. 2004; 346: 805
- 8d Liu R. Dong C. Liang X. Wang X. Hu X. J. Org. Chem. 2005; 70: 729
- 8e Xie Y. Mo W. Xu D. Shen Z. Sun N. Hu B. Hu X. J. Org. Chem. 2007; 72: 4288
- 8f Wang X. Liu R. Jin Y. Liang X. Chem. Eur. J. 2008; 14: 2679
- 8g Kantam ML. Pal U. Sreedhar B. Bhargava S. Iwasawa Y. Tada M. Choudary BE. Adv. Synth. Catal. 2008; 350: 1225
- 9 Corey EJ. Kim CU. J. Am. Chem. Soc. 1972; 94: 7586
- 10a Oppenauer RV. Recl. Trav. Chim. Pays-Bas 1937; 56: 137
- 10b Graves CR. Zeng B.-S. Nguyen ST. J. Am. Chem. Soc. 2006; 128: 12596
- 11a Fatiadi AJ. Synthesis 1976; 65
- 11b Fatiadi AJ. Synthesis 1976; 133
- 11c Lou J.-D. Xu Z.-N. Tetrahedron Lett. 2002; 43: 6149
- 11d Alhumaimess M. Lin Z. He Q. Lu L. Dimitratos N. Dummer NF. Conte M. Taylor SH. Bartley JK. Kiely CJ. Hutchings GJ. Chem. Eur. J. 2014; 20: 1701
- 12a Griffith WP. Ley SV. Whitcombe GP. White AD. J. Chem. Soc., Chem. Commun. 1987; 1625
- 12b Ley SV. Norman J. Griffith WP. Marsden SP. Synthesis 1994; 639
- 13a Uozumi Y. Nakao R. Angew. Chem. Int. Ed. 2003; 42: 194
- 13b Della Pina C. Falletta E. Rossi M. J. Catal. 2008; 260: 384
- 13c Mizoguchi H. Uchida T. Ishida K. Katsuki T. Tetrahedron Lett. 2009; 50: 3432
- 13d Zhou X.-T. Ji H.-B. Liu S.-G. Tetrahedron Lett. 2013; 54: 3882
- 13e Devari S. Deshidi R. Kumar M. Kumar A. Sharma S. Rizvi M. Kushwaha M. Gupta AP. Shah BA. Tetrahedron Lett. 2013; 54: 6407
- 13f Han L. Xing P. Jiang B. Org. Lett. 2014; 16: 3428
- 13g Liu C. Fang Z. Yang Z. Li Q. Guo S. Zhang K. Ouyang P. Guo K. Tetrahedron Lett. 2015; 56: 5973
- 13h Liu C. Fang Z. Yang Z. Li Q. Guo S. Guo K. RSC Adv. 2015; 5: 79699
- 13i Saffar-Teluri A. RSC Adv. 2015; 5: 70577
- 13j Samanta S. Biswas P. RSC Adv. 2015; 5: 84328
- 14 Pfitzner KE. Moffatt JG. J. Am. Chem. Soc. 1963; 85: 3027
- 15 Parikh JR. Doering W. vonE. J. Am. Chem. Soc. 1967; 89: 5505
- 16a Omura K. Swern D. Tetrahedron 1978; 34: 1651
- 16b Mancuso AJ. Brownfain DS. Swern D. J. Org. Chem. 1979; 44: 4148
- 17a Albright JD. Goldman L. J. Am. Chem. Soc. 1965; 87: 4214
- 17b Albright JD. Goldman L. J. Am. Chem. Soc. 1967; 89: 2416
- 18 Onodera K. Hirano S. Kashimura N. J. Am. Chem. Soc. 1965; 87: 4651
- 19 Liu H.-J. Nyangulu JM. Tetrahedron Lett. 1988; 29: 3167
- 20 Li C. Xu Y. Lu M. Zhao Z. Liu L. Zhao Z. Cui Y. Zheng P. Ji X. Gao G. Synlett 2002; 2041
- 21a Choudhury LH. Parvin T. Khan AT. Tetrahedron 2009; 65: 9513
- 21b Inagaki M. Matsumoto S. Tsuri T. J. Org. Chem. 2003; 68: 1128
-
21c
Majetich G.
Hicks R.
Reister S.
J. Org. Chem. 1997; 62: 4321
- 22 Aldehydes 2a–n; General Procedures Protocol A: A mixture of the benzylic alcohol 1 (1 mmol) and 98% H2SO4 (1 mmol) in DMSO (3 mL) was stirred for the appropriate time under reflux conditions. The mixture was then cooled to r.t., and brine (4 mL) was added. The organic phase was extracted with CH2Cl2 (6 mL), and the organic layer was dried (Na2SO4), filtered, and concentrated under reduced pressure. In all cases, the reaction products were obtained with high purity, and did not require further purification by distillation or column chromatography. Protocol B: A mixture of benzylic alcohol (1 mmol) and 98% H2SO4 (0.5 mmol) in DMSO (3 mL) was stirred for the appropriate reaction time under reflux conditions. The reaction mixture was then worked up as described in Protocol A.