Synlett 2018; 29(07): 974-978
DOI: 10.1055/s-0037-1609149
letter
© Georg Thieme Verlag Stuttgart · New York

Sulfuric Acid-Promoted Oxidation of Benzylic Alcohols to Aromatic Aldehydes in Dimethyl Sulfoxide: An Efficient Metal-Free Oxidation Approach

Ehsan Sheikhi*
a   School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran   Email: ehsan.sheikhi@gmail.com   Email: madib@khayam.ut.ac.ir
,
Mehdi Adib*
a   School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran   Email: ehsan.sheikhi@gmail.com   Email: madib@khayam.ut.ac.ir
,
Morteza Akherati Karajabad
a   School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran   Email: ehsan.sheikhi@gmail.com   Email: madib@khayam.ut.ac.ir
,
Seyed Jamal Addin Gohari
b   Department of Chemistry, Imam Hossein University, Tehran, Iran
› Author Affiliations
This research was supported by the Research Council of University of Tehran.
Further Information

Publication History

Received: 17 October 2017

Accepted after revision: 18 December 2017

Publication Date:
29 January 2018 (online)


Abstract

An efficient metal-free oxidation of benzylic alcohols to ­aromatic aldehydes is described. Heating a solution of the benzylic alcohol in DMSO in the presence of H2SO4 afforded the corresponding aldehyde in excellent yield. This oxidation reaction, which proceeds with a short reaction time and no side products, is akin to the Pfitzner–Moffatt oxidation, but without the need for N,N′-dicyclohexylcarbodiimide.

 
  • References and Notes

    • 1a Bowden K. Heilbron IM. Jones ER. H. Weedon BC. L. J. Chem. Soc. 1946; 39
    • 1b Heilbron SI. Jones ER. H. Sondheimer F. J. Chem. Soc. 1949; 604
    • 2a Collins JC. Hess WW. Frank FJ. Tetrahedron Lett. 1968; 9: 3363
    • 2b Collins JC. Hess WW. Org. Synth. Coll. Vol. VI . Wiley; London: 1988: 644
  • 3 Corey EJ. Suggs JW. Tetrahedron Lett. 1975; 16: 2647
  • 4 Corey EJ. Schmidt G. Tetrahedron Lett. 1979; 20: 399
    • 5a Dess DB. Martin JC. J. Org. Chem. 1983; 48: 4155
    • 5b Dess DB. Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
    • 6a Corey EJ. Palani A. Tetrahedron Lett. 1995; 36: 7945
    • 6b Frigerio M. Santagostino M. Sputore S. Palmisano G. J. Org. Chem. 1995; 60: 7272
    • 7a Zhdankin VV. Stang PJ. Chem. Rev. 2002; 102: 2523
    • 7b Stang PJ. J. Org. Chem. 2003; 68: 2997
    • 7c Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
    • 8a Brünjes M. Sourkouni-Argirusi G. Kirschning A. Adv. Synth. Catal. 2003; 345: 635
    • 8b Liu R. Liang X. Dong C. Hu X. J. Am. Chem. Soc. 2004; 126: 4112
    • 8c Gamez P. Arends IW. C. E. Sheldon RA. Reedijk J. Adv. Synth. Catal. 2004; 346: 805
    • 8d Liu R. Dong C. Liang X. Wang X. Hu X. J. Org. Chem. 2005; 70: 729
    • 8e Xie Y. Mo W. Xu D. Shen Z. Sun N. Hu B. Hu X. J. Org. Chem. 2007; 72: 4288
    • 8f Wang X. Liu R. Jin Y. Liang X. Chem. Eur. J. 2008; 14: 2679
    • 8g Kantam ML. Pal U. Sreedhar B. Bhargava S. Iwasawa Y. Tada M. Choudary BE. Adv. Synth. Catal. 2008; 350: 1225
  • 9 Corey EJ. Kim CU. J. Am. Chem. Soc. 1972; 94: 7586
    • 10a Oppenauer RV. Recl. Trav. Chim. Pays-Bas 1937; 56: 137
    • 10b Graves CR. Zeng B.-S. Nguyen ST. J. Am. Chem. Soc. 2006; 128: 12596
    • 12a Griffith WP. Ley SV. Whitcombe GP. White AD. J. Chem. Soc., Chem. Commun. 1987; 1625
    • 12b Ley SV. Norman J. Griffith WP. Marsden SP. Synthesis 1994; 639
    • 13a Uozumi Y. Nakao R. Angew. Chem. Int. Ed. 2003; 42: 194
    • 13b Della Pina C. Falletta E. Rossi M. J. Catal. 2008; 260: 384
    • 13c Mizoguchi H. Uchida T. Ishida K. Katsuki T. Tetrahedron Lett. 2009; 50: 3432
    • 13d Zhou X.-T. Ji H.-B. Liu S.-G. Tetrahedron Lett. 2013; 54: 3882
    • 13e Devari S. Deshidi R. Kumar M. Kumar A. Sharma S. Rizvi M. Kushwaha M. Gupta AP. Shah BA. Tetrahedron Lett. 2013; 54: 6407
    • 13f Han L. Xing P. Jiang B. Org. Lett. 2014; 16: 3428
    • 13g Liu C. Fang Z. Yang Z. Li Q. Guo S. Zhang K. Ouyang P. Guo K. Tetrahedron Lett. 2015; 56: 5973
    • 13h Liu C. Fang Z. Yang Z. Li Q. Guo S. Guo K. RSC Adv. 2015; 5: 79699
    • 13i Saffar-Teluri A. RSC Adv. 2015; 5: 70577
    • 13j Samanta S. Biswas P. RSC Adv. 2015; 5: 84328
  • 14 Pfitzner KE. Moffatt JG. J. Am. Chem. Soc. 1963; 85: 3027
  • 15 Parikh JR. Doering W. vonE. J. Am. Chem. Soc. 1967; 89: 5505
    • 16a Omura K. Swern D. Tetrahedron 1978; 34: 1651
    • 16b Mancuso AJ. Brownfain DS. Swern D. J. Org. Chem. 1979; 44: 4148
    • 17a Albright JD. Goldman L. J. Am. Chem. Soc. 1965; 87: 4214
    • 17b Albright JD. Goldman L. J. Am. Chem. Soc. 1967; 89: 2416
  • 18 Onodera K. Hirano S. Kashimura N. J. Am. Chem. Soc. 1965; 87: 4651
  • 19 Liu H.-J. Nyangulu JM. Tetrahedron Lett. 1988; 29: 3167
  • 20 Li C. Xu Y. Lu M. Zhao Z. Liu L. Zhao Z. Cui Y. Zheng P. Ji X. Gao G. Synlett 2002; 2041
    • 21a Choudhury LH. Parvin T. Khan AT. Tetrahedron 2009; 65: 9513
    • 21b Inagaki M. Matsumoto S. Tsuri T. J. Org. Chem. 2003; 68: 1128
    • 21c Majetich G. Hicks R. Reister S. J. Org. Chem. 1997; 62: 4321
  • 22 Aldehydes 2a–n; General Procedures Protocol A: A mixture of the benzylic alcohol 1 (1 mmol) and 98% H2SO4 (1 mmol) in DMSO (3 mL) was stirred for the appropriate time under reflux conditions. The mixture was then cooled to r.t., and brine (4 mL) was added. The organic phase was extracted with CH2Cl2 (6 mL), and the organic layer was dried (Na2SO4), filtered, and concentrated under reduced pressure. In all cases, the reaction products were obtained with high purity, and did not require further purification by distillation or column chromatography. Protocol B: A mixture of benzylic alcohol (1 mmol) and 98% H2SO4 (0.5 mmol) in DMSO (3 mL) was stirred for the appropriate reaction time under reflux conditions. The reaction mixture was then worked up as described in Protocol A.