Synthesis 2018; 50(12): 2416-2422
DOI: 10.1055/s-0037-1609483
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of Chromenes from Vinyl o-Quinone Methides via a Brønsted Acid Catalyzed Electrocyclization Process

Si-Jia Liu
,
Xiao-Li Jiang
,
Shu-Fang Wu
School of Chemistry and Materials Science, and the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn   Email: mstu2016@126.com
,
Man-Su Tu*
School of Chemistry and Materials Science, and the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn   Email: mstu2016@126.com
,
Guang-Jian Mei*
School of Chemistry and Materials Science, and the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn   Email: mstu2016@126.com
,
Feng Shi  *
School of Chemistry and Materials Science, and the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn   Email: mstu2016@126.com
› Author Affiliations
We much appreciate the financial support from NSFC (21702077 and 21772069), the Natural Science Foundation of Jiangsu Province (BK20160003 and BK20170227), TAPP, and Six Kinds of Talents Project of Jiangsu Province (SWYY-025).
Further Information

Publication History

Received: 31 January 2018

Accepted after revision: 17 March 2018

Publication Date:
25 April 2018 (online)


Abstract

An efficient approach for the synthesis of chromene derivatives from vinyl o-quinone methides was established via a Brønsted acid catalyzed electrocyclization. By using this methodology, a series of structurally diversified chromenes was synthesized in a highly atom-economic and environmentally benign manner with generally good to excellent yields (up to 98% yield). This reaction will not only provide an efficient method for the construction of chromene scaffolds, but also enrich the research area of o-quinone methides.

Supporting Information

 
  • References

  • 1 These authors contributed equally to this work.

    • For selected reviews, see:
    • 2a Pratap R. Ram VJ. Chem. Rev. 2014; 114: 10476
    • 2b Costa M. Dias TA. Brito A. Proenca F. Eur. J. Med. Chem. 2016; 123: 487
    • 3a Cheenpracha S. Karalai C. Ponglimanont C. Kanjana-Opas A. J. Nat. Prod. 2009; 72: 1395
    • 3b Chen J. Leng H. Duan Y. Zhao W. Yang G. Guo Y. Chen Y. Hu Q. Phytochem. Lett. 2013; 6: 144
  • 4 Liby K. Rendi M. Suh N. Royce DB. Risingsong R. Williams CR. Lamph W. Labrie F. Krajewski S. Xu X. Kim H. Brown P. Sporn MB. Clin. Cancer Res. 2006; 12: 5902
  • 5 Cheng J.-F. Ishikawa A. Ono Y. Arrhenius T. Nadzan A. Bioorg. Med. Chem. Lett. 2003; 13: 3647
  • 6 Chen B. Fairhurst RA. Floersheimer A. Furet P. Jiang S. Lu W. Marsilje TH. Vaupel A. Patent WO2011064211A1, 2011

    • For selected reviews, see:
    • 7a Shi Y.-L. Shi M. Org. Biomol. Chem. 2007; 5: 1499
    • 7b Ferreira SB. da Silva F. dC. Pinto AC. Gonzaga DT. G. Ferreira VF. J. Heterocycl. Chem. 2009; 46: 1080
    • 7c Majumdar N. Paul ND. Mandal S. de Bruin B. Wulff WD. ACS Catal. 2015; 5: 2329
    • 7d Sadek KU. Mekheimer RA. H. Abd-Elmonem M. Abdel-Hameed A. Elnagdi MH. Tetrahedron 2017; 28: 1462

      For selected examples, see:
    • 8a Wang Z.-Q. Lei Y. Zhou M.-B. Chen G.-X. Song R.-J. Xie Y.-X. Li J.-H. Org. Lett. 2011; 13: 14
    • 8b Cui Z. Shang X. Shao X.-F. Liu Z.-Q. Chem. Sci. 2012; 3: 2853
    • 8c Hornillos V. van Zijl AW. Feringa BL. Chem. Commun. 2012; 48: 3712
    • 8d Majumdar N. Korthals KA. Wulff WD. J. Am. Chem. Soc. 2012; 134: 1357
    • 8e Paul ND. Mandal S. Otte M. Cui X. Zhang XP. de Bruin B. J. Am. Chem. Soc. 2014; 136: 1090
    • 8f Siyang H.-X. Wu X.-R. Ji X.-Y. Wu X.-Y. Liu P.-N. Chem. Commun. 2014; 50: 8514
    • 8g Zeng B.-S. Yu X.-Y. Siu P.-W. Scheidt KA. Chem. Sci. 2014; 5: 2277
    • 8h Wang P.-S. Liu P. Zhai Y.-J. Lin H.-C. Han Z.-Y. Gong L.-Z. J. Am. Chem. Soc. 2015; 137: 12732
    • 8i Kuppusamy R. Muralirajan K. Cheng C.-H. ACS Catal. 2016; 6: 3909
    • 8j Qiu Y.-F. Song X.-R. Li M. Zhu X.-Y. Wang A.-Q. Yang F. Han Y.-P. Zhang H.-R. Jin D.-P. Li Y.-X. Liang Y.-M. Org. Lett. 2016; 18: 1514
    • 8k Liu S. Chen K. Lan X.-C. Hao W.-J. Li G. Tu S.-J. Jiang B. Chem. Commun. 2017; 53: 10692
    • 8l Xia J. Nie Y. Yang G. Liu Y. Zhang W. Org. Lett. 2017; 19: 4884
    • 8m Zheng Y. Qiu L. Hong K. Dong S. Xu X. Chem. Eur. J. 2018; DOI 10.1002/chem.201704759
    • 8n Ma C. Zhao Y. Org. Biomol. Chem. 2018; 16: 703

      For some examples, see:
    • 10a Gharpure SJ. Sathiyanarayanan AM. Vuram PK. RSC Adv. 2013; 3: 18279
    • 10b Hsiao C.-C. Raja S. Liao H.-H. Atodiresei I. Rueping M. Angew. Chem. Int. Ed. 2015; 54: 5762
    • 10c Zhao J.-J. Sun S.-B. He S.-H. Wu Q. Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460

      For related reviews, see:
    • 11a Pathak TP. Sigman MS. J. Org. Chem. 2011; 76: 9210
    • 11b Willis NJ. Bray CD. Chem. Eur. J. 2012; 18: 9160
    • 11c Bai W.-J. David JG. Feng Z.-G. Weaver MG. Wu K.-L. Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
    • 11d Singh MS. Nagaraju A. Anand N. Chowdhury S. RSC Adv. 2014; 4: 55924
    • 11e Wang Z. Sun J. Synthesis 2015; 47: 3629
    • 11f Jaworski AA. Scheidt KA. J. Org. Chem. 2016; 81: 10145

      For selected 1,4-additions of o-QMs, see:
    • 12a Mattson AE. Scheidt KA. J. Am. Chem. Soc. 2007; 129: 4508
    • 12b Luan Y. Schaus SE. J. Am. Chem. Soc. 2012; 134: 19965
    • 12c Guo WG. Wu B. Zhou X. Chen P. Wang X. Zhou YG. Liu Y. Li C. Angew. Chem. Int. Ed. 2015; 54: 4522
    • 12d Lewis RS. Garza CJ. Dang AT. Pedro TK. A. Chain WJ. Org. Lett. 2015; 17: 2278
    • 12e Zhao W. Wang Z. Chu B. Sun J. Angew. Chem. Int. Ed. 2015; 54: 1910
    • 12f Wang Z. Ai F. Wang Z. Zhao W. Zhu G. Lin Z. Sun J. J. Am. Chem. Soc. 2015; 137: 383

      For [4+1] annulations of o-QMs, see:
    • 13a Jiang X.-L. Liu S.-J. Gu Y.-Q. Mei G.-J. Shi F. Adv. Synth. Catal. 2017; 359: 3341
    • 13b Lian X.-L. Adili A. Liu B. Tao Z.-L. Han Z.-Y. Org. Biomol. Chem. 2017; 15: 3670
    • 13c Yang Q.-Q. Xiao W.-J. Eur. J. Org. Chem. 2017; 233

      For selected [4+2] annulations of o-QMs, see:
    • 14a Saha S. Schneider C. Org. Lett. 2015; 17: 648
    • 14b Yu X.-Y. Chen J.-R. Wei Q. Cheng H.-G. Liu Z.-C. Xiao W.-J. Chem. Eur. J. 2016; 22: 6774
    • 14c Zhang Y.-C. Zhu Q.-N. Yang X. Zhou L.-J. Shi F. J. Org. Chem. 2016; 81: 1681
    • 14d Chen P. Wang K. Guo W. Liu X. Liu Y. Li C. Angew. Chem. Int. Ed. 2017; 56: 3689
    • 14e Wang Z. Sun J. Org. Lett. 2017; 19: 2334

      For [4+3] annulations of o-QMs, see:
    • 15a Izquierdo J. Orue A. Scheidt KA. J. Am. Chem. Soc. 2013; 135: 10634
    • 15b Lv H. Jia WQ. Sun L.-H. Ye S. Angew. Chem. Int. Ed. 2013; 52: 8607
    • 15c Mei G.-J. Zhu Z.-Q. Zhao J.-J. Bian C.-Y. Chen J. Chen R.-W. Shi F. Chem. Commun. 2017; 53: 2768

      For selected examples of o-VQMs-involved reactions, see:
    • 16a Lv H. You L. Ye S. Adv. Synth. Catal. 2009; 351: 2822
    • 16b Adili A. Tao Z.-L. Chen D.-F. Han Z.-Y. Org. Biomol. Chem. 2015; 13: 2247
    • 16c Ref. 10b
    • 16d Jin J.-H. Li X.-Y. Luo X. Fossey JS. Deng W.-P. J. Org. Chem. 2017; 82: 5424
    • 16e Wang Z. Wang T. Yao W. Lu Y. Org. Lett. 2017; 19: 4126
    • 17a For an early example, see: Jurd L. Tetrahedron 1977; 33: 163
    • 17b For a mechanistic investigation, see: Bishop LM. Winkler M. Houk KN. Bergman RG. Trauner D. Chem. Eur. J. 2008; 14: 5405
    • 17c For a catalytic asymmetric transformation, see: Rueping M. Uria U. Lin M.-Y. Atodiresei I. J. Am. Chem. Soc. 2011; 133: 3732