RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2018; 29(14): 1857-1860
DOI: 10.1055/s-0037-1609551
DOI: 10.1055/s-0037-1609551
letter
A Fluorenyl Activating Group Enables Addition of Simple Grignard Reagents to C=N Electrophiles
Weitere Informationen
Publikationsverlauf
Received: 17. Mai 2018
Accepted after revision: 10. Juni 2018
Publikationsdatum:
10. Juli 2018 (online)
Abstract
Nucleophilic addition of organometallic reagents to ketimines and hydrazones can be a challenging transformation. Here we report the use of fluorenone-derived mixed azines which promote facile addition of Grignard reagents. The fluorenylidene activating group is easily installed and removed, thereby offering practical access to highly substituted amines and hydrazines.
Key words
amines - Grignard reaction - hydrazones - imines - nucleophilic addition - organometallic reagentsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609551.
- Supporting Information
-
References and Notes
- 1a Lai Y.-H. Synthesis 1981; 585
- 1b Wakefield BJ. Organomagnesium Methods in Organic Chemistry . Academic Press; San Diego, CA: 1995
- 1c Silverman GS. Rakita PE. Handbook of Grignard Reagents . Marcel Dekker; New York: 1996
- 1d Richey HG. Grignard Reagents: New Developments . Wiley; Chichester: 2000
- 1e Knochel P. Dohle W. Gommermann N. Kneisel FF. Kopp F. Korn T. Sapountzis I. Vu VA. Angew. Chem. Int. Ed. 2003; 42: 4302
- 1f Knochel P. Handbook of Functionalized Organometallics . Wiley-VCH; Weinheim: 2005
- 2a Bloch R. Chem. Rev. 1998; 98: 1407
- 2b Kobayashi S. Mori Y. Fossey JS. Salter MM. Chem. Rev. 2011; 111: 2626
- 2c Yamada K. Tomioka K. Chem. Rev. 2008; 108: 2874
- 2d Shibasaki M. Kanai M. Chem. Rev. 2008; 108: 2853
- 2e Ellman JA. Owens TD. Tang TP. Acc. Chem. Res. 2002; 35: 984
- 2f McMahon JP. Ellman JA. Org. Lett. 2004; 6: 1645
- 3 Allyl Grignards are well-known to be particularly nucleophilic and less basic, reacting with even very hindered electrophiles. See for example: DeMeester WA. Fuson RC. J. Org. Chem. 1965; 30: 4332
- 4a Lu A. Huang D. Wang K.-H. Su Y. Ma J. Xu Y. Hu Y. Synthesis 2016; 48: 293
- 4b Cui Y. Li W. Sato T. Yamashita Y. Kobayashi S. Adv. Synth. Catal. 2013; 355: 1193
- 4c Yue X. Qiu X. Qing F. Chin. J. Chem. 2009; 27: 141
- 4d Schneider U. Chen I.-H. Kobayashi S. Org. Lett. 2008; 10: 737
- 4e Garcia-Flores F. Flores-Michel L.-S. Juaristi E. Tetrahedron Lett. 2006; 47: 8235
- 4f Ding H. Friestad GK. Synthesis 2004; 2216
- 4g Berger R. Duff K. Leighton JL. J. Am. Chem. Soc. 2004; 126: 5686
- 4h Hirabayashi R. Ogawa C. Sugiura M. Kobayashi S. J. Am. Chem. Soc. 2001; 123: 9493
- 5a Marques-Lopez E. Herrera RP. Fernandez R. Lassaletta JM. Eur. J. Org. Chem. 2008; 3457
- 5b Konishi H. Ogawa C. Sugiura M. Kobayashi S. Adv. Synth. Catal. 2005; 347: 1899
- 5c Keith JM. Jacobsen EN. Org. Lett. 2004; 6: 153
- 5d Chiba T. Okimoto M. Synthesis 1990; 209
- 6a Prieto A. Bouyssi D. Monteiro N. Asian J. Org. Chem. 2016; 5: 742
- 6b Dilman AD. Arkhipov DE. Levin VV. Belyakov A. Korlyukov AA. Struchkova MI. Tartakovsky VA. J. Org. Chem. 2008; 73: 5643
- 7 Notte GT. Leighton JL. J. Am. Chem. Soc. 2008; 130: 6676
- 8a Nam TK. Jang DO. J. Org. Chem. 2018;
- 8b Friestad GK. Ji A. Org. Lett. 2008; 10: 2311
- 8c Miyabe H. Yamaoka Y. Takemoto Y. J. Org. Chem. 2005; 70: 3324
- 9a Bamford WR. Stevens TS. M. J. Chem. Soc. 1952; 4735
- 9b Felix D. Müller RK. Horn U. Joos R. Schreiber J. Eschenmoser A. Helv. Chim. Acta 1972; 55: 1276
- 9c Shapiro RH. Org. React. 1976; 23: 405
- 10a Overberger CG. DiGiulio AV. J. Am. Chem. Soc. 1958; 80: 6562
- 10b Cram DJ. Bradshaw JS. J. Am. Chem. Soc. 1963; 85: 1108
- 11 Nishino T. Miyaji K. Iwamoto S. Mikashima T. Saruhashi K. Kishikawa Y. WO 2012074067, 2012
- 12 Johns AM. Liu Z. Hartwig JF. Angew. Chem. Int. Ed. 2007; 46: 7259
- 13 General Procedure for Reactions of Azine Substrates with Grignard ReagentsTo a solution of azine substrate in anhydrous THF (ca. 0.2 M) cooled to 0 °C was added slowly a solution of Grignard reagent (1–5 equiv). After addition, the reaction mixture was allowed to warm to room temperature and stir for 16 h. After this time, the reaction was quenched with 5% aqueous citric acid, and the mixture was extracted with isopropyl acetate (3×). The combined organics were washed with water and brine, dried over sodium sulfate, and concentrated. The resulting crude material was purified by column chromatography. NOTE: The azine substrates were generally found to be hygroscopic. Therefore, best yields were obtained when the azines were dried overnight in a vacuum dessicator over anhydrous calcium sulfate prior to use.
- 14 Analytical Data for Example Azine 1b 1H NMR (400 MHz, CDCl3): δ = 8.13 (d, J = 7.6 Hz, 1 H), 7.86 (d, J = 7.4 Hz, 1 H), 7.61 (dd, J = 11.1, 7.5 Hz, 2 H), 7.39 (tt, J = 7.5, 1.3 Hz, 2 H), 7.34–7.21 (m, 2 H), 4.05–3.93 (m, 4 H), 2.81–2.69 (m, 4 H), 2.04–1.95 (m, 2 H), 1.87–1.78 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 164.25, 155.11, 142.27, 141.01, 136.86, 131.54, 131.06, 130.55, 129.43, 128.01, 127.99, 122.48, 119.96, 119.75, 108.00, 64.56, 34.70, 33.73, 32.15, 25.06. LRMS: m/z [M + H]+ calcd for C21H21N2O2 +: 333; found: 333.
- 15 Analytical Data for Example Product 2b 1H NMR (400 MHz, CDCl3): δ = 7.83–7.73 (m, 3 H), 7.71–7.62 (m, 1 H), 7.40 (td, J = 7.5, 1.1 Hz, 1 H), 7.34 (td, J = 7.5, 1.3 Hz, 1 H), 7.33–7.23 (m, 2 H), 6.68 (s, 1 H), 3.96 (s, 3 H), 2.16–2.06 (m, 2 H), 1.96–1.85 (m, 2 H), 1.82–1.72 (m, 3 H), 1.72–1.62 (m, 4 H), 0.84 (t, J = 7.5 Hz, 3 H). 13C NMR (101 MHz, CDCl3); δ = 140.63, 138.76, 138.47, 137.30, 130.35, 128.47, 127.46, 127.37, 127.10, 123.87, 120.48, 120.25, 119.35, 108.96, 64.28, 64.28, 57.78, 32.77, 31.55, 30.61, 7.55. LRMS: m/z [M + H]+ calcd for C23H27N2O2 +: 363; found: 363.
Addition of carbon radicals to hydrazones is possible when the substrate is quite electrophilic, e.g., 1,2-dicarbonyl- or aldehyde-derived. See for example: