Subscribe to RSS
DOI: 10.1055/s-0037-1609584
Design and Synthesis of Aromatics through [2+2+2] Cyclotrimerization
S.K. thanks the Department of Science and Technology (DST), New Delhi for the financial support (EMR/2015/002053). G.S. thanks the CSIR-New Delhi for the award of a research fellowship. S.K. thanks the DST for the award of a J. C. Bose fellowship (SR/S2/JCB-33/2010) and Praj industries for a Chair Professor (green chemistry).Publication History
Received: 12.02.2018
Accepted after revision: 18.06.2018
Publication Date:
08 August 2018 (online)

Abstract
The [2+2+2] cycloaddition reaction is a useful tool to realize unusual chemical transformations which are not achievable by traditional methods. Here, we report our work during the past two decades that involve utilization of transition-metal complexes in a [2+2+2] cyclotrimerization reaction. Several key “building blocks” were assembled by a [2+2+2] cycloaddition approach and they have been further expanded by other synthetic transformations to design unusual amino acids and peptides, diphenylalkanes, bis- and trisaryl benzene derivatives, annulated benzocycloalkanes, spirocycles, and spirooxindole derivatives. Furthermore, we have also discussed about alkyne surrogates, environmentally friendly, and stereoselective [2+2+2] cycloaddition reactions. Application of the [2+2+2] cycloaddition reaction in total synthesis is also covered. In this review we also included others work to give a balanced view of the recent developments in the area of [2+2+2] cycloaddition.
1 Introduction
2 Unusual Amino Acids and Peptides
3 Heteroanalogues of Indane
4 Diphenylalkane Derivatives
5 Multi-Armed Aryl Benzene Derivatives
6 Annulated Benzocycloalkanes
7 Spirocycles
8 Selectivity in [2+2+2] Cycloaddition of Alkynes
9 [2+2+2] Cycloaddition Reactions under Environmentally Friendly Conditions
10 Alkyne Surrogates
11 Domino Reactions involving a [2+2+2] Cycloaddition
12 Biologically Important Targets/Total Synthesis
13 Conclusions
-
References
- 1a Tanaka K. Synthesis of Helically Chiral Aromatic Compounds via [2+2+2] Cycloaddition. In Transition-Metal-Mediated Aromatic Ring Construction. Tanaka K. John Wiley & Sons; Hoboken: 2013: 281
- 1b Bertholet PE. M. C. R. Hebd. Seances Acad. Sci. 1866; 63: 905
- 2 Reppe W. Schweckendiek WJ. Justus Liebigs Ann. Chem. 1948; 560: 104
- 3a Babazadeh M. Soleimani-Amiri S. Vessally E. Hosseiniah A. Edjlali L. RSC Adv. 2017; 7: 43716
- 3b Tanaka K. Transition Metal-Mediated Aromatic Ring Construction. In Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. Mortier J. John Wiley & Sons; Hoboken: 2016: 587-600
- 3c Hapke M. Tetrahedron Lett. 2016; 57: 5719
- 3d Okamoto S. Sugiyama Y. Synlett 2013; 24: 1044
- 3e Shibata Y. Tanaka K. Synthesis 2012; 323
- 3f Broere DL. J. Ruijter E. Synthesis 2012; 2639
- 3g Tanaka K. Heterocycles 2012; 85: 1017
- 3h Weding N. Hapke M. Chem. Soc. Rev. 2011; 40: 4525
- 3i Domínguez G. Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
- 3j Shaaban MR. El-Sayed R. Elwahy AH. M. Tetrahedron 2011; 67: 6095
- 3k Inglesby PA. Evans PA. Chem. Soc. Rev. 2010; 39: 2791
- 3l Galan BR. Rovis T. Angew. Chem. Int. Ed. 2009; 48: 2830
- 3m Leboeuf D. Gandon V. Malacria M. Transition Metal-Mediated [2+2+2] Cycloadditions. In Handbook of Cyclization Reactions. Vol. 1. Ma S. Wiley-VCH; Weinheim: 2009: 367-406
- 3n Hess W. Treutwein J. Hilt G. Synthesis 2008; 3537
- 3o Agenet N. Gandon V. Buisine O. Slowinski F. Malacria M. Cotrimerization of Acetylenic Compounds. In Organic Reactions. Vol. 68, 1–302. RajanBabu TV. John Wiley & Sons; Hoboken: 2007
- 3p Heller B. Hapke M. Chem. Soc. Rev. 2007; 36: 1085
- 3q Chopade PR. Louie J. Adv. Synth. Catal. 2006; 348: 2307
- 3r Gandon V. Aubert C. Malacria M. Chem. Commun. 2006; 2209
- 3s Yamamoto Y. Curr. Org. Chem. 2005; 9: 503
- 3t Kotha S. Brahmachary E. Lahiri K. Eur. J. Org. Chem. 2005; 4741
- 3u Varela JA. Saá C. Chem. Rev. 2003; 103: 3787
- 3v Domínguez G. Péter-Castells J. Chem. Eur. J. 2016; 22: 6720
- 4a Varela JA. Saá C. J. Organomet. Chem. 2009; 694: 143
- 4b Yamamoto Y. In Transition-Metal-Mediated Aromatic Ring Construction. Tanaka K. John Wiley & Sons; Hoboken: 2013: 71-125
- 4c Kirchner K. Calhorda MJ. Schmid R. Veiros LF. J. Am. Chem. Soc. 2003; 125: 11721
- 5a Kotha S. Goyal D. Chavan AS. J. Org. Chem. 2013; 78: 12288
- 5b Kotha S. Goyal D. Thota N. Sreenivas V. Eur. J. Org. Chem. 2012; 1843
- 5c Kotha S. Lahiri K. Curr. Med. Chem. 2005; 12: 849
- 5d Blaskovich MA. T. J. Med. Chem. 2016; 59: 10807
- 5e Schiller PW. Weltrowaska G. Nguyen TM. -D. Lemieux C. Chung NN. Marsden BJ. Wilkes BC. J. Med. Chem. 1991; 34: 3125
- 5f Kotha S. Acc. Chem. Res. 2003; 36: 342
- 6a Kotha S. Brahmachary E. Tetrahedron Lett. 1997; 38: 3561
- 6b Kotha S. Halder S. Synlett 2010; 337
- 6c Hassner A. Namboothiri I. Organic Syntheses Based on Name Reactions. Elsevier; Oxford: 2012: 269
- 7a Kotha S. Ganesh T. Ghosh AK. Bioorg. Med. Chem. Lett. 2000; 10: 1755
- 7b Kotha S. Khedkar P. Chem. Rev. 2012; 112: 1650
- 8 Shchetnikov GT. Osipov SN. Bruneau C. Dixneuf PH. Synlett 2008; 578
- 9 Garcia L. Pla-Quintana A. Roglans A. Org. Biomol. Chem. 2009; 7: 5020
- 10a Kotha S. Sreevani G. Tetrahedron Lett. 2015; 56: 5903
- 10b Sreevani G. [2+2+2] Cyclotrimerization with Propargyl Halides: New Strategies and Tactics to Carbo- and Heterocycles Involving Green Synthetic Routes, Ph.D. Thesis. Indian Institute of Technology; Bombay: 2018
- 10c Kotha S. Sreevani G. Tetrahedron Lett. 2018; 59: 1996
- 11 Tahara Y. Obinata S. Kanyiva KS. Shibata T. Mandi A. Taniguchi T. Monde K. Eur. J. Org. Chem. 2016; 1405
- 12 Obinata S. Tahara Y. Kanyiva KS. Shibata T. Heterocycles 2017; 95: 1121
- 13a Kotha S. Mishra S. Krishna NG. Vijayalakshmi B. Saifuddin M. Devunuri N. Heterocycles 2016; 93: 185
- 13b Kotha S. Misra S. Krishna NG. Nagaraju D. Heterocycles 2010; 80: 847
- 13c Kotha S. Sreenivasachary N. Bioorg. Med. Chem. Lett. 2000; 10: 1413
- 13d Kotha S. Sreenivasachary N. Chem. Commun. 2000; 503
- 14a Kotha S. Dipak MK. Tetrahedron 2012; 68: 397
- 14b Kotha S. Lahiri K. Synlett 2007; 2767
- 14c Zotova MA. Vorobyeva DV. Dixneuf PH. Bruneau C. Osipov SN. Synlett 2013; 24: 1517
- 15 Kotha S. Banerjee S. Synthesis 2007; 1015
- 16 Kotha S. Mohanraja K. Durani S. Chem. Commun. 2000; 1909
- 17a Kotha S. Sreevani G. Heterocycles 2017; 95: 1204
- 17b Kotha S. Sreevani G. ChemistrySelect 2017; 2: 10804
- 17c Kotha S. Sreevani G. ACS Omega 2018; 3: 1850
- 18a Witulski B. Stengel T. Fernández-Hernández JM. Chem. Commun. 2000; 1965
- 18b Feng C. Wang X. Wang B.-Q. Zhao K.-Q. Hu P. Shi Z.-J. Chem. Commun. 2012; 48: 356
- 18c Wang Y. Hsu W. Ho F. Li C. Wang C. Chen H. Tetrahedron 2017; 73: 7210
- 19a Ibuki E. Ozasa S. Fujioka Y. Okada M. Yakugaku Zasshi 1980; 100: 718
- 19b Kotha S. Khedkar P. Eur. J. Org. Chem. 2009; 730
- 20a Kotha S. Seema V. Mobin SM. Synthesis 2011; 1581
- 20b Kotha S. Mandal K. Chem. Asian. J. 2009; 4: 354
- 20c Kotha S. Lahiri K. Eur. J. Org. Chem. 2007; 1221
- 20d Kotha S. Lahiri K. Kashinath D. Tetrahedron 2002; 58: 9633
- 21 Kotha S. Bansal D. Kumar V. Indian J. Chem. 2009; 48B: 225
- 22 Komine Y. Miyauchi Y. Kobayashi M. Tanaka K. Synlett 2010; 3092
- 23 Kotha S. Krishna NG. Misra S. Khedkar P. Synthesis 2011; 2945
- 24a Hudlicky T. Reed JW. The Way of Synthesis. Wiley-VCH; Weinheim: 2007. 9
- 24b Kotha S. Deb A. Lahiri K. Manivannan E. Synthesis 2009; 165
- 24c Kotha S. Deb A. Indian J. Chem. 2008; 47B: 1120
- 24d Kotha S. Panguluri NR. Ali R. Eur. J. Org. Chem. 2017; 5316
- 24e Kotha S. Manivannan E. ARKIVOC 2003; (iii): 67
- 24f Kotha S. Manivannan E. Sreenivasachary N. Ganesh T. Deb AC. Synlett 1999; 1618
- 24g Kotha S. Manivannan E. J. Chem. Soc., Perkin Trans. 1 2001; 2543
- 25a Kotha S. Ali R. Tiwari A. Synlett 2013; 1921
- 25b Kotha S. Ali R. Tetrahedron 2015; 71: 1597
- 25c Fürstner A. Langemann K. J. Am. Chem. Soc. 1997; 119: 9130
- 26a Kotha S. Ali R. Tetrahedron Lett. 2015; 56: 2172
- 26b Kotha S. Saifuddin M. Ali R. Shirbhate ME. Sreevani G. Indian J. Chem. 2017; 56B: 1231
- 27 Kotha S. Ali R. Tetrahedron Lett. 2015; 56: 3992
- 28 Kotha S. Ali R. Tetrahedron 2015; 71: 1597
- 29a Kotha S. Ali R. Heterocycles 2014; 88: 789
- 29b Kotha S. Deb A. Vinodkumar R. Bioorg. Med. Chem. Lett. 2005; 15: 1039
- 30a Yamamoto Y. Ishii J. Nishiyama H. Itoh K. J. Am. Chem. Soc. 2004; 126: 3712
- 30b Yamamoto Y. Ishii J. Nishiyama H. Itoh K. J. Am. Chem. Soc. 2005; 127: 9625
- 31 Chouraqui G. Petit M. Aubert C. Malacria M. Org. Lett. 2009; 6: 1519
- 32 Mori N. Ikeda S. Odashima K. Chem. Commun. 2001; 181
- 33 Jeevanandam A. Korivi RP. Huang I. Cheng C. Org. Lett. 2002; 4: 807
- 34a Young DD. Senaiar RS. Deiters A. Chem. Eur. J. 2006; 12: 5563
- 34b Young DD. Sripada L. Deiters A. J. Comb. Chem. 2007; 9: 735
- 34c Brun S. Torrent A. Pla-Quintana A. Roglans A. Fontrodona X. Benet-Buchholz J. Parella T. Organometallics 2012; 31: 318
- 34d Dachs A. Torrent A. Roglans A. Parella T. Osuna S. Solà M. Chem. Eur. J. 2009; 15: 5289
- 35a Peters JU. Blechert S. Chem. Commun. 1997; 1983
- 35b Yamamoto Y. Arakawa T. Ogawa R. Itoh K. J. Am. Chem. Soc. 2003; 125: 12143
- 36a Kinoshita H. Shinokubo H. Oshima K. J. Am. Chem. Soc. 2003; 125: 7784
- 36b Cadierno V. Garcia-Garrido SE. Gimeno J. J. Am. Chem. Soc. 2006; 128: 15094
- 36c Wang Y. Huang S. Huang T. Tsai F. Tetrahedron 2010; 66: 7136
- 37a Bhatt D. Chowdhury H. Goswami A. Org. Lett. 2017; 19: 3350
- 37b Chowdhury H. Chatterjee N. Goswami A. Eur. J. Org. Chem. 2015; 7735
- 38a Hara H. Hirano M. Tanaka K. Org. Lett. 2008; 10: 2537
- 38b Hiromi H. Hirano M. Tanaka K. Org. Lett. 2009; 11: 1337
- 38c Zhang K. Louie J. J. Org. Chem. 2011; 76: 4686
- 38d Matsuda T. Suzuki K. Eur. J. Org. Chem. 2015; 3032
- 38e Fujita T. Watabe Y. Ichitsuka T. Ichikawa J. Chem. Eur. J. 2015; 21: 13225
- 39a Wakatsuki Y. Yamazaki H. Tetrahedron Lett. 1973; 14: 3383
- 39b Wakatsuki Y. Yamazaki H. J. Chem. Soc., Chem. Commun. 1973; 280
- 39c Lautens M. Klute W. Tam W. Chem. Rev. 1996; 96: 49
- 39d Yamamoto Y. Kinpara K. Saigoku T. Takagishi H. Okuda S. Nishiyama H. Itoh K. J. Am. Chem. Soc. 2005; 127: 605
- 39e Domínguez G. Péter-Castells J. Chem. Eur. J. 2016; 22: 6720
- 40a Boese R. Harvey DF. Malaska MJ. Vollhardt KP. C. J. Am. Chem. Soc. 1994; 116: 11153
- 40b Pírez D. Siesel BA. Malaska MJ. David E. Vollhardt KP. C. Synlett 2000; 306
- 40c Sheppard GS. Vollhardt KP. C. J. Org. Chem. 1986; 51: 5496
- 40d Boese R. Knçlker HJ. Vollhardt KP. C. Angew. Chem., Int. Ed. Engl. 1987; 26: 1035
- 41a Eichberg MJ. Dorta RL. Grotjahn DB. Lamottke K. Schmidt M. Vollhardt KP. C. J. Am. Chem. Soc. 2001; 123: 9324
- 41b Eichberg MJ. Dorta RL. Lamottke K. Vollhardt KP. C. Org. Lett. 2000; 2: 2479
- 41c Grotjahn DB. Vollhardt KP. C. J. Am. Chem. Soc. 1986; 108: 2091
- 41d Boese R. Van Sickle AP. Vollhardt KP. C. Synthesis 1994; 1374
- 42a Pelissier H. Rodriguez J. Vollhardt KP. C. Chem. Eur. J. 1999; 5: 3549
- 42b Boese R. Rodriguez J. Vollhardt KP. C. Angew. Chem. Int. Ed. Engl. 1991; 30: 993
- 42c Aubert C. Betschmann P. Eichberg MJ. Gandon V. Heckrodt TJ. Lehmann J. Malacria M. Masjost B. Paredes E. Vollhardt KP. C. Whitener GD. Chem. Eur. J. 2007; 13: 7443
- 43a Elderfiled RC. Heterocyclic compounds. Vol. 2. Chap. 2 Wiley & Sons; New York: 1951
- 43b Chang H.-T. Jeganmohan M. Cheng C.-H. Chem. Commun. 2005; 4955
- 44 Tanaka K. Osaka T. Noguchi K. Hirano M. Org. Lett. 2007; 9: 1307
- 45 Bonfield ER. Li C. -J. Adv. Synth. Catal. 2008; 350: 370