RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2019; 51(07): 1603-1610
DOI: 10.1055/s-0037-1609636
DOI: 10.1055/s-0037-1609636
paper
Nickel-Catalyzed Decarboxylative Coupling of Alkynyl Carboxylates with Aryl Tosylates and Mesylates
This work was supported by the NSF (CHE-1554630) Research Corporation for Science Advancement, Organic Syntheses Inc. PUI Summer Research Grant, and St. Olaf College.Weitere Informationen
Publikationsverlauf
Received: 29. September 2018
Accepted after revision: 07. Oktober 2018
Publikationsdatum:
20. November 2018 (online)
§ These authors contributed equally
Abstract
A method for the nickel-catalyzed coupling of alkynyl carboxylates or acids with aryl tosylates and mesylates is described. Electronically varied carboxylates and aryl electrophiles participate in these transformations to afford the desired diarylalkyne products. In general, electrophiles bearing an extended π-system lead to products in higher yields than sulfonates with only one aromatic ring.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/10.1055/s-0037-1609636.
- Supporting Information
-
References
- 1a Schwarz J, König B. Green Chem. 2018; 20: 323
- 1b Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
- 1c Font M, Quibell JM, Perry GJ. P, Larrosa I. Chem. Commun. 2017; 53: 5584
- 1d Hoover JM. Comments Inorg. Chem. 2017; 37: 169
- 1e Guo L.-N, Wang H, Duan X.-H. Org. Biomol. Chem. 2016; 14: 7380
- 1f Huang H, Jia K, Chen Y. ACS Catal. 2016; 6: 4983
- 1g Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 1h Miao J, Ge H. Synlett 2014; 25: 911
- 1i Gooßen LJ, Gooßen K. Top. Organomet. Chem. 2013; 44: 121
- 1j Park K, Lee S. RSC Adv. 2013; 3: 14165
- 1k Cornella J, Larrosa I. Synthesis 2012; 44: 653
- 1l Dzik WI, Lange PP, Gooßen LJ. Chem. Sci. 2012; 3: 2671
- 1m Weaver JD, Recio A, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
- 1n Rodríguez N, Gooßen LJ. Chem. Soc. Rev. 2011; 40: 5030
- 1o Gooßen LJ, Rodríguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
- 2a Metal-Catalyzed Cross-Coupling Reactions . de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004. 2nd ed.
- 2b Seechurn CC. C. J, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 3a Hu P, Zhang M, Jie X, Su W. Angew. Chem. Int. Ed. 2012; 51: 227
- 3b Zhang F.-Z, Greaney MF. Angew. Chem. Int. Ed. 2010; 49: 2768
- 3c Xie K, Yang Z, Zhou X, Li X, Wang S, Tan Z, An X, Guo C.-C. Org. Lett. 2010; 12: 1564
- 3d Wang C, Piel I, Glorius F. J. Am. Chem. Soc. 2009; 131: 4194
- 3e Cornella J, Lu P, Larrosa I. Org. Lett. 2009; 11: 5506
- 3f Voutchkova A, Coplin A, Leadbeater NE, Crabtree RH. Chem. Commun. 2008; 6312
- 4a Neely JM, Rovis T. J. Am. Chem. Soc. 2014; 136: 2735
- 4b Zhang J, Liu J.-F, Ugrinov A, Pillai AF. X, Sun Z.-M, Zhao P. J. Am. Chem. Soc. 2013; 135: 17270
- 4c Wang J, Liu B, Zhao H, Wang J. Organometallics 2012; 31: 8598
- 4d Sun ZM, Zhang J, Zhao P. Org. Lett. 2010; 12: 992
- 4e Austeri M, Linder D, Lacour J. Adv. Synth. Catal. 2010; 352: 3339
- 4f Austeri M, Linder D, Lacour J. Chem. Eur. J. 2008; 14: 5737
- 4g Burger EC, Tunge JA. Org. Lett. 2004; 6: 2603
- 5a Chen L, Ju L, Bustin KA, Hoover JM. Chem. Commun. 2015; 51: 15059
- 5b Ponpandian T, Muthusubramanian S. Tetrahedron Lett. 2012; 53: 4248
- 5c Shang R, Fu Y, Wang Y, Xu Q, Yu H.-Z, Liu L. Angew. Chem. Int. Ed. 2009; 48: 9350
- 6a Rong G, Liu D, Lu L, Yan H, Zheng Y, Chen J, Mao J. Tetrahedron 2014; 70: 5033
- 6b Zhao J, Zhou W, Han J, Li G, Pan Y. Tetrahedron Lett. 2013; 54: 6507
- 6c Zhao J, Fang H, Han J, Pan Y. Beilstein J. Org. Chem. 2013; 9: 1718
- 6d Yang H, Yan H, Sun P, Zhu Y, Lu L, Liu D, Rong G, Mao J. Green Chem. 2013; 15: 976
- 6e Bi H.-P, Chen W.-W, Liang Y.-M, Li C.-J. Org. Lett. 2009; 11: 3246
- 7a Yang K, Zhang C, Wang P, Zhang Y, Ge H. Chem. Eur. J. 2014; 20: 7241
- 7b Wu Y, Liu L, Yan K, Xu P, Gao Y, Zhao Y. J. Org. Chem. 2014; 79: 8118
- 7c Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
- 7d Choe J, Yang J, Park K, Palani T, Lee S. Tetrahedron Lett. 2012; 53: 6908
- 8a Crovak RA, Hoover JM. J. Am. Chem. Soc. 2018; 140: 2434
- 8b Honeycutt AP, Hoover JM. ACS Catal. 2017; 7: 4597
- 8c Crawford JM, Shelton KE, Sadarananda BK, Reeves EK, Kalyani D. Org. Chem. Front. 2015; 2: 726
- 8d Yang K, Wang P, Zhang C, Kadi AA, Fun H.-K, Zhang Y, Lu H. Eur. J. Org. Chem. 2014; 7586
- 8e Amaike K, Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 13573
- 9a Mesganaw T, Garg NK. Org. Process Res. Dev. 2013; 17: 29
- 9b Kozhushkov SI, Potukuchi HK, Ackermann L. Catal. Sci. Technol. 2013; 3: 562
- 9c So CM, Kwong FY. Chem. Soc. Rev. 2011; 40: 4963
- 9d Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
- 9e Li B.-J, Yu D.-G, Sun C.-L, Shi Z.-J. Chem. Eur. J. 2011; 17: 1728
- 9f Yu D.-G, Li B.-J, Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
- 9g Antoft-Finch A, Blackburn T, Snieckus V. J. Am. Chem. Soc. 2009; 131: 17750
- 10a Lee J.-H, Raja GC. E, Yu S, Lee J, Song KH, Lee S. ACS Omega 2017; 2: 6259
- 10b Fujino T, Hinoue T, Usuki Y, Satoh T. Org. Lett. 2016; 18: 5688
- 10c Sardzinski LW, Wertjes WC, Schnaith AM, Kalyani D. Org. Lett. 2015; 17: 1256
- 10d Song B, Knauber T, Gooßen LJ. Angew. Chem. Int. Ed. 2013; 52: 2954
- 10e Gooßen LJ, Rodríguez N, Lange PP, Linder C. Angew. Chem. Int. Ed. 2010; 49: 1111
- 10f Kim H, Lee PH. Adv. Synth. Catal. 2009; 351: 2827
- 10g Gooßen LJ, Rodríguez N, Linder C. J. Am. Chem. Soc. 2008; 130: 15248
- 11a Steinberg DF, Turk MC, Kalyani D. Tetrahedron 2017; 73: 2196
- 11b Yi Z, Aschenaki Y, Daley R, Davick S, Schnaith A, Wander R, Kalyani D. J. Org. Chem. 2017; 82: 6946
- 11c Ferguson DM, Rudolph SR, Kalyani D. ACS Catal. 2014; 4: 2395
- 11d Wang J, Ferguson DM, Kalyani D. Tetrahedron 2013; 69: 5780
- 11e Nervig CS, Waller PJ, Kalyani D. Org. Lett. 2012; 14: 4838
- 12a Son Y, Kim H.-S, Lee J.-H, Jang J, Lee C.-F, Lee S. Tetrahedron Lett. 2017; 58: 1413
- 12b Raja GC. E, Irudayanathan FM, Kim H.-S, Kim J, Lee S. J. Org. Chem. 2016; 81: 5244
- 13a Jang J, Raja GC. E, Lee J.-H, Son Y, Kim J, Lee S. Tetrahedron Lett. 2016; 57: 4581
- 13b Lee J.-H, Raja GC. E, Son Y, Jang J, Kim J, Lee S. Tetrahedron Lett. 2016; 57: 4824
- 13c Li X, Yang F, Wu Y. J. Org. Chem. 2013; 78: 4543
- 13d Park K, Bae G, Moon J, Choe J, Song KH, Lee SJ. J. Org. Chem. 2010; 75: 6244
- 14 The reactions are heterogeneous. The carboxylate is less soluble in p-xylene than in dioxane or diglyme. The lower yields at higher temperature might be in part due to decarboxylative dimerization (mass consistent with this byproduct was observed by GCMS). The Aldrich specification sheet for dioxane or diglyme did not mention the presence of any inhibitors.
- 15 The carboxylate equivalence is largely empirical. The products were isolated using reaction conditions that showed highest conversion and least byproducts by GCMS. The reaction using p-methoxyphenyl tosylate led to the product in low yield and we were unable to isolate a clean sample of the desired product.
- 16a Shang R, Xu Q, Jiang Y.-Y, Wang Y, Liu L. Org. Lett. 2010; 12: 1000
- 16b Ogata T, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 13848
- 16c Lei X, Jalla A, Shama MA. A, Stafford JM, Cao B. Synthesis 2015; 47: 2578
- 17 Liu L, Zhao D, Liu M, Zhou Y, Chen T. Org. Lett. 2018; 20: 2741
- 18 Nishida T, Ida H, Kuninobo Y, Kanai M. Nat. Commun. 2014; 5: 1
- 19 Okura K, Kawashima H, Tamakuni F, Nishida N, Shirakawa E. Chem. Commun. 2016; 52: 14019
- 20 Tian Z.-Y, Wang S.-M, Jia S.-J, Song H.-X, Zhang C.-P. Org. Lett. 2017; 19: 5454
- 21 Zhang M, Jia T, Wang CY, Walsh PJ. J. Am. Chem. Soc. 2015; 137: 10346
For representative examples of Pd-catalyzed decarboxylative reactions, see:
For representative examples of Rh- and Ru-catalyzed reactions, see:
For representative examples of Cu-catalyzed decarboxylative reactions, see:
For representative examples of Fe-catalyzed decarboxylative cross-couplings, see:
For Ni-catalyzed decarboxylative cross-couplings, see:
For Ni-catalyzed decarbonylative and decarboxylative C–H arylations, see:
For Ni-catalyzed synthesis of diarylalkynes via decarboxylative cross-coupling, see:
For Pd-catalyzed synthesis of diarylalkynes via decarboxylative cross-coupling, see: