Subscribe to RSS
DOI: 10.1055/s-0037-1609682
Cobalt-Catalyzed Hydroboration and Borylation of Alkenes and Alkynes
We gratefully acknowledge the financial support from the National Natural Science Foundation of China (21432011, 21572255, 21732006)
Publication History
Received: 21 March 2018
Accepted after revision: 21 March 2018
Publication Date:
23 April 2018 (online)

Abstract
Incorporation of the boryl moiety across a carbon–carbon multiple bond is a powerful method for the synthesis of organoboron compounds. This kind of transformation could be realized with high chemo-, regio-, and stereoselectivity by using an appropriate transition-metal catalyst. This account summarizes the latest advances from our group in the area of cobalt-catalyzed hydroboration and borylation of alkenes and alkynes, which lead to the formation of a variety of organoboron compounds, including alkylboronates, 1,1,1-tris(boronates), 1,1-diborylalkenes, and 1,1-diboronates.
1 Introduction
2 Cobalt-Catalyzed Hydroboration of Alkenes
3 Cobalt-Catalyzed Dehydrogenative Borylations-Hydroboration
4 Cobalt-Catalyzed Double Dehydrogenative Borylations of 1-Alkenes
5 Cobalt-Catalyzed Hydroboration of Terminal Alkynes
6 Summary and Outlook
-
References
- 1 Hall DG. Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. John Wiley & Sons; Weinheim: 2006
- 2 Miyaura N. Yamada K. Suzuki A. Tetrahedron Lett. 1979; 3437
- 3a Wada R. Shibuguchi T. Makino S. Oisaki K. Kanai M. Shibasaki M. J. Am. Chem. Soc. 2006; 128: 7687
- 3b Rauniyar V. Zhai H. Hall DG. J. Am. Chem. Soc. 2008; 130: 8481
- 3c Althaus M. Mahmood A. Suárez JR. Thomas SP. Aggarwal VK. J. Am. Chem. Soc. 2010; 132: 4025
- 3d Hesse MJ. Essafi S. Watson CG. Harvey JN. Hirst D. Willis CL. Aggarwal VK. Angew. Chem. Int. Ed. 2014; 53: 6145
- 4a Stymiest JL. Bagutski V. French RM. Aggarwal VK. Nature 2008; 456: 778
- 4b Mlynarski SN. Karns AS. Morken JP. J. Am. Chem. Soc. 2012; 134: 16449
- 5a Xu J. Xiao B. Xie C.-Q. Luo D.-F. Liu L. Fu Y. Angew. Chem. Int. Ed. 2012; 51: 12551
- 5b Li Z. Wang Z. Zhu L. Tan X. Li C. J. Am. Chem. Soc. 2014; 136: 16439
- 6 Brown HC. Kramer GW. Levy AB. Midland MM. Organic Syntheses via Boranes. Wiley; New York: 1975
- 7a Carroll A.-M. O’Sullivan TP. Guiry PJ. Adv. Synth. Catal. 2005; 347: 609
- 7b Vogels CM. Westcott SA. Curr. Org. Chem. 2005; 9: 687
- 7c Collins BS. L. Wilson CM. Myers EL. Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 11700
- 7d Männig D. Nöth H. Angew. Chem. Int. Ed. Engl. 1985; 24: 878
- 7e Evans DA. Fu GC. Hoveyda AH. J. Am. Chem. Soc. 1988; 110: 6917
- 7f Burgess K. Van der Donk WA. Westcott SA. Marder TB. Baker RT. Calabrese JC. J. Am. Chem. Soc. 1992; 114: 9350
- 7g Evans DA. Fu GC. Anderson BA. J. Am. Chem. Soc. 1992; 114: 6679
- 7h Dang L. Zhao H. Lin Z. Marder TB. Organometallics 2008; 27: 1178
- 8a Tucker CE. Davidson J. Knochel P. J. Org. Chem. 1992; 57: 3482
- 8b Westcott SA. Marder TB. Baker RT. Organometallics 1993; 12: 975
- 8c Pereira S. Srebnik M. J. Am. Chem. Soc. 1996; 118: 909
- 8d Crudden CM. Edwards D. Eur. J. Org. Chem. 2003; 4695
- 8e Crudden CM. Hleba YB. Chen AC. J. Am. Chem. Soc. 2004; 126: 9200
- 8f Mkhalid IA. I. Coapes RB. Edes SN. Coventry DN. Souza FE. S. Thomas RL. Hall JJ. Bi S.-W. Lin Z. Marder TB. Dalton Trans. 2008; 1055
- 8g Lata CJ. Crudden CM. J. Am. Chem. Soc. 2010; 132: 131
- 8h Smith SM. Takacs JM. J. Am. Chem. Soc. 2010; 132: 1740
- 8i Smith SM. Takacs JM. Org. Lett. 2010; 12: 4612
- 8j Cid J. Carbó JJ. Fernández E. Chem. Eur. J. 2012; 18: 1512
- 8k Oshima K. Ohmura T. Suginome M. J. Am. Chem. Soc. 2012; 134: 3699
- 8l Yang Z.-D. Pal R. Hoang GL. Zeng XC. Takacs JM. ACS Catal. 2014; 4: 763
- 8m Shoba VM. Thacker NC. Bochat AJ. Takacs JM. Angew. Chem. Int. Ed. 2016; 55: 1465
- 9a Brinkman JA. Nguyen TT. Sowa JR. Org. Lett. 2000; 2: 981
- 9b Ohmura T. Yamamoto Y. Miyaura N. J. Am. Chem. Soc. 2000; 122: 4990
- 9c Luna AP. Bonin M. Micouin L. Husson HP. J. Am. Chem. Soc. 2002; 124: 12098
- 9d Yamamoto Y. Fujikawa R. Umemoto T. Miyaura N. Tetrahedron 2004; 60: 10695
- 9e Black A. Brown JM. Pichon C. Chem. Commun. 2005; 5284
- 9f Cipot J. Vogels CM. McDonald R. Westcott SA. Stradiotto M. Organometallics 2006; 25: 5965
- 9g Mazet C. Gerard D. Chem. Commun. 2011; 298
- 10a Suginome M. Matsuda T. Yoshimoto T. Ito Y. Org. Lett. 1999; 1: 1567
- 10b Suginome M. Shirakura M. Yamamoto A. J. Am. Chem. Soc. 2006; 128: 14438
- 10c Ely RJ. Morken JP. J. Am. Chem. Soc. 2010; 132: 2534
- 10d Ely RJ. Yu Z. Morken JP. Tetrahedron Lett. 2015; 56: 3402
- 11a Alfaro R. Parra A. Alemán J. Tortosa M. Synlett 2013; 24: 804
- 11b Yun J. Asian J. Org. Chem. 2013; 2: 1016
- 11c Semba K. Fujihara T. Terao J. Tsuji Y. Tetrahedron 2015; 71: 2183
- 11d Mun S. Lee J.-E. Yun J. Org. Lett. 2006; 8: 4887
- 11e Lee J.-E. Kwon J. Yun J. Chem. Commun. 2008; 733
- 11f Lee Y. Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 3160
- 11g Noh D. Chea H. Ju J. Yun J. Angew. Chem. Int. Ed. 2009; 48: 6062
- 11h Asaki Y. Zhong C. Sawamura M. Ito H. J. Am. Chem. Soc. 2010; 132: 1226
- 11i Jang H. Zhugralin AR. Lee Y. Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 7859
- 11j Sasaki Y. Horita Y. Zhong C. Sawamura M. Ito H. Angew. Chem. Int. Ed. 2011; 50: 2778
- 11k Corberán R. Mszar NW. Hoveyda AH. Angew. Chem. Int. Ed. 2011; 50: 7079
- 12a Catalysis without Precious Metals. Bullock RM. Wiley-VCH; Weinheim: 2010
- 12b Iron Catalysis in Organic Chemistry: Reactions and Applications. Plietker B. Wiley-VCH; Weinheim, Germany: 2008
- 12c Chakraborty S. Bhattacharya P. Dai H. Guan H. Acc. Chem. Res. 2015; 48: 1995
- 12d Li Y.-Y. Yu S.-L. Shen W.-Y. Gao J.-X. Acc. Chem. Res. 2015; 48: 2587
- 13a Tseng KN. T. Kampf JW. Szymczak NK. ACS Catal. 2015; 5: 411
- 13b Espinal-Viguri M. Woof CR. Webster RL. Chem. Eur. J. 2016; 22: 11605
- 13c MacNair AJ. Millet CR. P. Nichol GS. Ironmonger A. Thomas SP. ACS Catal. 2016; 6: 7217
- 13d Chen X. Cheng Z. Lu Z. Org. Lett. 2017; 19: 969
- 14 Wu JY. Moreau BT. Ritter T. J. Am. Chem. Soc. 2009; 131: 12915
- 15a Cao Y. Zhang Y. Zhang L. Zhang D. Leng X. Huang Z. Org. Chem. Front. 2014; 1: 1101
- 15b Zhang L. Peng D. Leng X. Huang Z. Angew. Chem. Int. Ed. 2013; 52: 3676
- 16a Obligacion JV. Chirik PJ. Org. Lett. 2013; 15: 2680
- 16b Greenhalgh MD. Thomas SP. Chem. Commun. 2013; 11230
- 17 Wang C. Wu C. Ge S. ACS Catal. 2016; 6: 7585
- 18a Yoshida H. ACS Catal. 2016; 6: 1799
- 18b Rawat VS. Sreedhar B. Synlett 2014; 25: 1132
- 18c Khan A. Asiri AM. Kosa SA. Garcia H. Grirrane A. J. Catal. 2015; 329: 401
- 18d Gorgas N. Alves LG. Stöger B. Martins AM. Veiros LF. Kirchner K. J. Am. Chem. Soc. 2017; 139: 8130
- 19 Nakagawa N. Hatakeyama T. Nakamura M. Chem. Eur. J. 2015; 21: 4257
- 20a Chirik PJ. Acc. Chem. Res. 2015; 48: 1687
- 20b Moselage M. Li J. Ackermann L. ACS Catal. 2016; 6: 498
- 20c Du X. Huang Z. ACS Catal. 2017; 7: 1227
- 21 Zaidlewicz M. Meller J. Tetrahedron Lett. 1997; 38: 7279
- 22 Zhang L. Zuo Z. Leng X. Huang Z. Angew. Chem. Int. Ed. 2014; 53: 2696
- 23a Obligacion JV. Chirik PJ. J. Am. Chem. Soc. 2013; 135: 19107
- 23b Peng J. Docherty JH. Dominey AP. Thomas SP. Chem. Commun. 2017; 4726
- 23c Ibrahim AD. Entsminger SW. Fout AR. ACS Catal. 2017; 7: 3730
- 23d Reilly SW. Webster CE. Hollis TK. Valle HU. Dalton Trans. 2016; 2823
- 24 For a Co-catalyzed diborylation of 1,1-distubstituted vinylarenes, see: Teo WJ. Ge S. Angew. Chem. Int. Ed. 2018; 57: 1654
- 25a Ruddy AJ. Sydora OL. Small BL. Stradiotto M. Turculet L. Chem. Eur. J. 2014; 20: 13918
- 25b Palmer WN. Diao T. Pappas I. Chirik PJ. ACS Catal. 2015; 5: 622
- 25c Ogawa T. Ruddy AJ. Sydora OL. Stradiotto M. Turculet L. Organometallics 2017; 36: 417
- 25d Scheuermann ML. Johnson EJ. Chirik PJ. Org. Lett. 2015; 17: 2716
- 26 Zhang L. Zuo Z. Wan X. Huang Z. J. Am. Chem. Soc. 2014; 136: 15501
- 27a Cui X. Burgess K. Chem. Rev. 2005; 105: 3272
- 27b Roseblade SJ. Pfaltz A. Acc. Chem. Res. 2007; 40: 1402
- 27c Thomas SP. Aggarwal VK. Angew. Chem. Int. Ed. 2009; 48: 1896
- 27d Verendel JJ. Pàmies O. Diéguez M. Andersson PG. Chem. Rev. 2014; 114: 2130
- 28 Chen J. Xi T. Ren X. Cheng B. Guo J. Lu Z. Org. Chem. Front. 2014; 1: 1306
- 29 Chen J. Xi T. Lu Z. Org. Lett. 2014; 16: 6452
- 30 Zhang H. Lu Z. ACS Catal. 2016; 6: 6596
- 31a Zuo Z. Yang J. Huang Z. Angew. Chem. Int. Ed. 2016; 55: 10839
- 31b Guo J. Lu Z. Angew. Chem. Int. Ed. 2016; 55: 10835
- 32 Zhang L. Huang Z. J. Am. Chem. Soc. 2015; 137: 15600
- 33a Castle RB. Matteson DS. J. Organomet. Chem. 1969; 20: 19
- 33b Matteson DS. Synthesis 1975; 147
- 33c Baker RT. Nguyen P. Marder TB. Westcott SA. Angew. Chem. Int. Ed. Engl. 1995; 34: 1336
- 33d Marder TB. Norman NC. Top. Catal. 1998; 5: 63
- 33e Bluhm M. Maderna A. Pritzkow H. Bethke S. Gleiter R. Siebert W. Eur. J. Inorg. Chem. 1999; 1693
- 33f Gu Y. Pritzkow H. Siebert W. Eur. J. Inorg. Chem. 2001; 373
- 33g Nguyen P. Coapes RB. Woodward AD. Taylor NJ. Burke JM. Howard JA. K. Marder TB. J. Organomet. Chem. 2002; 652: 77
- 33h Mita T. Ikeda Y. Michigami K. Sato Y. Chem. Commun. 2013; 5601
- 33i Palmer WN. Obligacion JV. Pappas I. Chirik PJ. J. Am. Chem. Soc. 2016; 138: 766
- 33j Palmer WN. Zarate C. Chirik PJ. J. Am. Chem. Soc. 2017; 139: 2589
- 34 Krautwald S. Bezdek MJ. Chirik PJ. J. Am. Chem. Soc. 2017; 139: 3868
- 35 Wen H. Zhang L. Zhu S. Liu G. Huang Z. ACS Catal. 2017; 7: 6419
- 36 Zuo Z. Huang Z. Org. Chem. Front. 2016; 3: 434
- 37a Brown HC. Gupta SK. J. Am. Chem. Soc. 1975; 97: 5249
- 37b Pereira S. Srebnik M. Organometallics 1995; 14: 3127
- 37c Pereira S. Srebnik M. Tetrahedron Lett. 1996; 37: 3283
- 37d He X. Hartwig JF. J. Am. Chem. Soc. 1996; 118: 1696
- 38 Obligacion JV. Neely JM. Yazdani AN. Pappas I. Chirik PJ. J. Am. Chem. Soc. 2015; 137: 5855
For some reviews, see:
For some examples, see:
For some reviews, see:
For some examples, see:
For a review, see:
For some recent examples, see: