RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2018; 29(11): 1505-1509
DOI: 10.1055/s-0037-1609751
DOI: 10.1055/s-0037-1609751
letter
Oxidative C–C Bond Cleavage for the Synthesis of Aryl Carboxylic Acids from Aryl Alkyl Ketones
This project was supported by the National Natural Science Foundation of China (21776260, 21773211 and 21376224), Natural Science Foundation of Zhejiang Province (LY17B060007) and Hangzhou Qianjiang Distinguished Experts Project.
Weitere Informationen
Publikationsverlauf
Received: 05. März 2018
Accepted after revision: 11. April 2018
Publikationsdatum:
16. Mai 2018 (online)
Abstract
A metal-free and one-pot two-step synthesis of aryl carboxylic acids from aryl alkyl ketones has been achieved. The reactions were performed with iodine as the catalyst, DMSO and TBHP as the oxidants. Under the optimal reaction conditions, a number of aryl alkyl ketones could be converted into their corresponding aryl carboxylic acids in good to excellent yields (up to 94%).
Key words
aryl alkyl ketones - aryl carboxylic acids - iodine - dimethyl sulfoxide - tert-butyl hydroperoxideSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609751.
- Supporting Information
-
References and Notes
- 1a Cleaves II HJ. Carboxylic Acid, In Encyclopedia of Astrobiology . Gargaud M. Springer; New York: 2011: 249
- 1b Peng JB. Qi XX. Wu XF. ChemSusChem. 2016; 9: 2279
- 1c Peng JB. Qi XX. Wu XF. Synlett 2016; 28: 175
- 1d Balkenhohl F. Bussche-Hünnefeld C. Lansky A. Zechel C. Angew. Chem., Int. Ed. Engl. 1996; 35: 2288
- 1e Nicolaou KC. Chen JS. Edmonds DJ. Estrada AA. Angew. Chem. Int. Ed. 2009; 48: 660
- 1f Wu XF. RSC Adv. 2016; 6: 83831
- 2a Wiberg KB. In Oxidation in Organic Chemistry . Academic Press; New York: 1965. Part A 69
- 2b Friedman L. Fishel DL. Shechte H. J. Org. Chem. 1965; 30: 1453
- 2c Worsley D. Mills A. Smith K. Hutchings MG. J. Chem. Soc., Chem. Commun. 1995; 1119
- 2d Shaikh TM. A. Emmanuvel L. Sudalai A. J. Org. Chem. 2006; 71: 5043
- 3a Thottathil JK. Moniot JL. Mueller RH. Wong MK. Y. Kissick TP. J. Org. Chem. 1986; 51: 3140
- 3b Nagataki T. Tachi Y. Itoh S. Chem. Commun. 2006; 4016
- 3c Lee JM. Park EJ. Cho SH. Chang S. J. Am. Chem. Soc. 2008; 130: 7824
- 3d Bonvin Y. Callens E. Larrosa I. Henderson DV. Oldham J. Burton AJ. Barrett AG. M. Org. Lett. 2005; 7: 4549
- 3e Sheldon RA. Arends IW. C. E. Adv. Synth. Catal. 2004; 346: 1051
- 3f Wang F. Xu J. Li XQ. Gao J. Zhou LP. Ohnishi R. Adv. Synth. Catal. 2005; 347: 1987
- 3g Bastock TW. Clark JH. Martin K. Trenbirth BW. Green Chem. 2002; 4: 615
- 3h Urgoitia G. SanMartin R. Herrero MT. Domínguez E. Chem. Commun. 2015; 51: 4799
- 4a Shapiro N. Vigalok A. Angew. Chem. Int. Ed. 2008; 47: 2849
- 4b Liu M. Li CQ. Angew. Chem. Int. Ed. 2016; 55: 10806
- 4c Yu H. Ru S. Dai GY. Zhai YY. Lin HL. Han S. Wei YG. Angew. Chem. Int. Ed. 2017; 56: 3867
- 4d Sarbajna A. Dutta I. Daw P. Dinda S. Rahaman SM. W. Sarkar A. Bera JK. ACS Catal. 2017; 7: 2786
- 4e Naimi-Jamal MR. Hamzeali H. Mokhtari J. Boy J. Kaupp G. ChemSusChem 2009; 2: 83
- 4f Jiang XG. Zhang JS. Ma SM. J. Am. Chem. Soc. 2016; 138: 8344
- 4g Freitag J. Nüchter M. Ondruschka B. Green Chem. 2003; 5: 291
- 4h Venkateswarlu V. Kumar KA. A. Gupta S. Singh D. Vishwakarma PA. Sawant SD. Org. Biomol. Chem. 2015; 13: 7973
- 4i Friis SD. Andersen TL. Skrydstrup T. Org. Lett. 2013; 15: 1378
- 4j Kumar KA. A. Venkateswarlu V. Vishwakarma RA. Sawant SD. Synthesis 2015; 47: 3161
- 4k Shaikh TM. Hong FE. Adv. Synth. Catal. 2011; 353: 1491
- 4l Griffith WP. Shoair AG. Suriaatmaja M. Synth. Commun. 2000; 30: 3091
- 4m Hart SR. Whitehead DC. Travis BR. Borhan B. Org. Biomol. Chem. 2011; 9: 4741
- 5 Wu FP. Peng JB. Meng LS. Qi XX. ChemCatChem 2017; 9: 3121
- 6a Wang M. Lu JM. Li LH. Li HJ. Liu HF. Wang F. J. Catal. 2017; 348: 160
- 6b Anjum A. Srinivas P. Chem. Lett. 2001; 9: 900
- 6c Shaikh TM. A. Sudalai A. Eur. J. Org. Chem. 2008; 4877
- 6d Hattori T. Okami H. Ichikawa T. Mori S. Sawama Y. Monguchi Y. Sajikia H. Adv. Synth. Catal. 2017; 359: 3490
- 6e Liu HF. Wang M. Li HJ. Luo NC. Xu ST. Wang G. J. Catal. 2017; 346: 170
- 6f Sathyanarayana P. Ravi O. Muktapuram PR. Bathula SR. Org. Biomol. Chem. 2015; 13: 9681
- 7a Bjørsvik HR. Liguori L. Merinero JA. V. J. Org. Chem. 2002; 67: 7493
- 7b Bjørsvik HR. Liguori L. González RR. G. Merinero JA. V. Tetrahedron Lett. 2002; 43: 4985
- 7c Zabjek A. Petrie A. Tetrahedron Lett. 1999; 40: 6077
- 7d Hirashima S. Nobuta T. Tada N. Itoh A. Synlett 2009; 2017
- 7e Lee JC. Lee JM. Synth. Commun. 2006; 36: 1071
- 7f Moriatty RM. Prakash I. Penmasta R. J. Chem. Soc., Chem. Commun. 1987; 202
- 8a Finkbeiner P. Nachtsheim. Synthesis 2013; 45: 979
- 8b Sharif M. Chen J. Langer P. Beller M. Wu X.-F. Org. Biomol. Chem. 2014; 12: 6359
- 9 Kalmode HP. Vadagaonkar KS. Shinde SL. Chaskar AC. J. Org. Chem. 2017; 82: 3781
- 10 Sathyanarayana P. Upare A. Ravi O. Muktapuram PR. Bathula SR. RSC Adv. 2016; 6: 22749
- 11a Yi SL. Li MC. Mo WM. Hu XQ. Hu BX. Sun N. Jin LQ. Shen ZL. Tetrahedron Lett. 2016; 57: 1912
- 11b Fang CJ. Li MC. Hu XQ. Mo WM. Hu BX. Sun N. Jin LQ. Shen ZL. RSC Adv. 2017; 7: 1484
- 12 Typical Procedure for the Synthesis of Carboxylic Acid (2a) A mixture of acetophenone (1a, 120 mg, 1 mmol), DMSO (47 mg, 6 mmol), and iodine (25 mg, 0.1 mmol) in chlorobenzene (2 mL) was stirred at 130 °C for 3 h until 1a was disappeared completely (monitored by thin layer chromatography). After being cooled to room temperature, TBHP (0.26 mL, ca. 2 mmol) was added to the above reaction mixture, and the reaction solution was stirred at 130 °C for another 3 h. Then the reaction was quenched with water, and the pH of the aqueous phase was adjusted to 11 with 0.1 mol/L NaOH. The aqueous phase was washed with diethyl ether 3 times with a total ether volume of 10 mL. Then the pH of the aqueous phase was adjusted to 2 with 0.1 mol/L HCl and extracted with diethyl ether 3 times with a total ether volume of 20 mL. The combined ether phase was dried over anhydrous sodium sulfate and evaporated in vacuo to obtain the crude product. The crude product was purified by column chromatography on silica gel with ethyl acetate/petroleum ether as the eluent to afford the desired product 2a as a white solid (87% yield). 1H NMR (500 MHz, DMSO-d 6): δ = 12.93 (s, 1 H), 7.96–7.94 (m, 2 H), 7.63–7.60 (m, 1 H), 7.51–7.48 (m, 2 H). 13C NMR (125 MHz, DMSO-d 6): δ = 167.2, 132.8, 130.8, 129.2, 128.5.
- 13 Yadav JS. Balanarsaiah E. Raghavendra S. Satyanarayana M. Tetrahedron Lett. 2006; 47: 4921
- 14 Reddy MR. Rao NN. Ramakrishina K. Meshram HM. Tetrahedron Lett. 2014; 55: 1898