Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(12): 1601-1606
DOI: 10.1055/s-0037-1609847
DOI: 10.1055/s-0037-1609847
letter
Cobalt(III)-Catalyzed 1,4-Addition of C(sp3)–H Bonds to Maleimides
We are grateful to the National Natural Science Foundation of China (21702160, 21402071), China Postdoctoral Science Foundation (2016M590967), Shaanxi Provincial Postdoctoral Science Foundation (2016BSHEDZZ21), and National Found for Fostering Talents of Basic Science (NFFTBS-J1103311, J1210057) for financial support.Further Information
Publication History
Received: 31 March 2018
Accepted after revision: 20 April 2018
Publication Date:
29 May 2018 (online)
![](https://www.thieme-connect.de/media/synlett/201812/lookinside/thumbnails/st-2018-v0193-l_10-1055_s-0037-1609847-1.jpg)
◇ These authors contributed equally to this work.
Abstract
Quinolines and succinimides play a crucial role in many pharmaceutical and natural products. Although sp2 C–H bond addition reactions have been extensively investigated, Co(III)-catalyzed sp3 C–H bond 1,4-addition reactions are relatively unexplored. In this manuscript, an efficient and atom-economic protocol for alkylation reactions of 8-methylquinolines with maleimides is presented. The reaction exhibits exceptional reactivity, satisfactory yields, excellent chemo- and regioselectivity, and tolerates a variety of functional groups.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609847.
- Supporting Information
-
References
- 1a Dyker G. Handbook of C–H Transformations: Applications in Organic Synthesis. Wiley-VCH; Weinheim: 2005
- 1b Activation and Functionalization of C–H Bonds . Goldberg KI. Goldman AS. ACS Symposium Series 885; Washington: 2004
- 1c Giri R. Shi B.-F. Engle KM. Maugel N. Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
- 1d Yu J.-Q. Shi Z.-J. C–H Activation . Springer; Berlin: 2010
- 1e Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
- 1f Colby DA. Bergman RG. Ellman JA. Chem. Rev. 2010; 110: 624
- 1g Colby DA. Tsai AS. Bergman RG. Ellman JA. Acc. Chem. Res. 2012; 45: 814
- 1h Song G. Li X. Acc. Chem. Res. 2015; 48: 1007
- 1i Ye B. Cramer N. Acc. Chem. Res. 2015; 48: 1308
- 1j He G. Wang B. Nack WA. Chen G. Acc. Chem. Res. 2016; 49: 635
- 2a Murai S. Kakiuchi F. Sekine S. Tanaka Y. Kamatani A. Sonoda M. Chatani N. Nature 1993; 366: 529
- 2b Leow D. Li G. Mei T.-S. Yu J.-Q. Nature 2012; 486: 518
- 2c Hennessy ET. Betley TA. Science 2013; 340: 591
- 2d McNally A. Haffemayer B. Collins BS. L. Gaunt MJ. Nature 2014; 510: 129
- 2e Tang R.-Y. Li Gang. Yu J.-Q. 2014; 507: 215
- 2f Sharma A. Hartwig JF. Nature 2015; 517: 600
- 2g Topczewski JJ. Cabrera PJ. Saper NI. Sanford MS. Nature 2016; 531: 220
- 2h Chu JC. K. Rovis T. Nature 2016; 539: 272
- 2i Le C. Liang Y. Evans RW. Li X. MacMillan DW. C. Nature 2017; 547: 79
- 3a Jazzar R. Hitce J. Renaudat A. Sofack-Kreutzer J. Baudoin O. Chem. Eur. J. 2010; 16: 2654
- 3b Li H. Li B.-J. Shi Z.-J. Catal. Sci. Technol. 2011; 1: 191
- 3c Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
- 3d Li B.-J. Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
- 3e Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 3f Dastbaravardeh N. Christakakou M. Haider M. Schnurch M. Synthesis 2014; 46: 1421
- 3g Vanjari R. Singh KN. Chem. Soc. Rev. 2015; 44: 8062
- 3h Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
- 4a Shabashov D. Daugulis O. Org. Lett. 2005; 7: 3657
- 4b Kalyani D. Deprez NR. Desai LV. Sanford MS. J. Am. Chem. Soc. 2005; 127: 7330
- 4c Chen X. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 12634
- 4d Thu H.-Y. Yu W.-Y. Che C.-M. J. Am. Chem. Soc. 2006; 128: 9048
- 4e Yu W.-Y. Sit WN. Lai K.-M. Zhou Z.-Y. Chan AS. C. J. Am. Chem. Soc. 2008; 130: 3304
- 4f Zhang J. Khaskin E. Anderson NP. Zavalij PY. Vedernikov AN. Chem. Commun. 2008; 3625
- 4g Iglesias A. Alvarez R. de Lera AR. Muniz K. Angew. Chem. Int. Ed. 2012; 51: 2225
- 4h Stowers KJ. Kubota A. Sanford MS. Chem. Sci. 2012; 3: 3192
- 4i Gulia N. Daugulis O. Angew. Chem. Int. Ed. 2017; 56: 3630
- 5a Liu B. Zhou T. Li B. Xu S. Song H. Wang B. Angew. Chem. Int. Ed. 2014; 53: 4191
- 5b Wang X. Yu D.-G. Glorius F. Angew. Chem. Int. Ed. 2015; 54: 10280
- 5c Huang X. Wang Y. Lan J. You J. Angew. Chem. Int. Ed. 2015; 54: 9404
- 5d Wang H. Tang G. Li X. Angew. Chem. Int. Ed. 2015; 54: 13049
- 5e Zhou B. Chen Z. Yang Y. Ai W. Tang H. Wu Y. Zhu W. Li Y. Angew. Chem. Int. Ed. 2015; 54: 12121
- 5f Yu S. Tang G. Li Y. Zhou X. Lan Y. Li X. Angew. Chem. Int. Ed. 2016; 55: 8696
- 5g Tang C. Zou M. Liu J. Wen X. Sun X. Zhang Y. Jiao N. Chem. Eur. J. 2016; 22: 11165
- 5h Hou W. Yang Y. Wu Y. Feng H. Li Y. Zhou B. Chem. Commun. 2016; 52: 9672
- 5i Wippich J. Truchan N. Bach T. Adv. Synth. Catal. 2016; 358: 2083
- 5j Hu X.-H. Yang X.-F. Loh T.-P. ACS Catal. 2016; 6: 5930
- 5k Kim S. Han S. Park J. Sharma S. Mishra NK. Oh HJ. Kwak H. Kim IS. Chem. Commun. 2017; 53: 3006
- 5l Yuan C. Tu G. Zhao Y. Org. Lett. 2017; 19: 356
- 6a Kang T. Kim H. Kim JG. Chang S. Chem. Commun. 2014; 50: 12073
- 6b Kang T. Kim Y. Lee D. Wang Z. Chang S. J. Am. Chem. Soc. 2014; 136: 4141
- 6c Gao P. Guo W. Xue J. Zhao Y. Yuan Y. Xia Y. Shi Z. J. Am. Chem. Soc. 2015; 137: 12231
- 6d Kim H. Park G. Park J. Chang S. ACS Catal. 2016; 6: 5922
- 7a Liu B. Li B. Wang B. Chem. Commun. 2015; 51: 16334
- 7b Murugesh V. Bruneau C. Achard M. Sahoo AR. Sharma GV. M. Suresh S. Chem. Commun. 2017; 53: 10448
- 8a Pellissier H. Clavier H. Chem. Rev. 2014; 114: 2775
- 8b Chirik PJ. Acc. Chem. Res. 2015; 48: 1687
- 8c Gandeepan P. Cheng C.-H. Acc. Chem. Res. 2015; 48: 1194
- 8d Yoshikai N. ChemCatChem 2015; 7: 732
- 8e Roese P. Hilt G. Synthesis 2016; 48: 463
- 8f Wei D. Zhu X. Niu J.-L. Song M.-P. ChemCatChem 2016; 8: 1242
- 8g Moselage M. Li J. Ackermann L. ACS Catal. 2016; 6: 498
- 8h Yoshino T. Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
- 8i Usman M. Ren Z.-H. Wang Y.-Y. Guan Z.-H. Synthesis 2017; 49: 1419
- 8j Wang S. Chen S.-Y. Yu X.-Q. Chem. Commun. 2017; 53: 3165
- 9a Sen M. Emayavaramban B. Barsu N. Premkumar JR. Sundararaju B. ACS Catal. 2016; 6: 2792
- 9b Barsu N. Rahman MA. Sen M. Sundararaju B. Chem. Eur. J. 2016; 22: 9135
- 9c Mita T. Hanagata S. Michigami K. Sato Y. Org. Lett. 2017; 19: 5876
- 9d Zhou Y. Tang Z. Song Q. Chem. Commun. 2017; 53: 8972
- 9e Tan PW. Mak AM. Sullivan MB. Dixon DJ. Seayad J. Angew. Chem. Int. Ed. 2017; 56: 16550
- 9f Yan S.-Y. Ling P.-X. Shi B.-F. Adv. Synth. Catal. 2017; 359: 2912
- 9g Zhang Z.-Z. Han Y.-Q. Zhan B.-B. Wang S. Shi B.-F. Angew. Chem. Int. Ed. 2017; 56: 13145
- 9h Wu X. Yang K. Zhao Y. Sun H. Li G. Ge H. Nat. Commun. 2015; 6: 6462
- 9i Zhang J. Chen H. Lin C. Liu Z. Wang C. Zhang Y. J. Am. Chem. Soc. 2015; 137: 12990
- 9j Barsu N. Bolli SK. Sundararaju B. Chem. Sci. 2017; 8: 2431
- 9k Williamson P. Galván A. Gaunt MJ. Chem. Sci. 2017; 8: 2588
- 10a Han SH. Kim S. De U. Mishra NK. Park J. Sharma S. Kwak JH. Han S. Kim HS. Kim IS. J. Org. Chem. 2016; 81: 12416
- 10b Sharma S. Han SH. Oh Y. Mishra NK. Lee SH. Oh JS. Kim IS. Org. Lett. 2016; 18: 2568
- 10c Han S. Park J. Kim S. Lee SH. Sharma S. Mishra NK. Jung YH. Kim IS. Org. Lett. 2016; 18: 4666
- 10d Sharma S. Han SH. Jo H. Han S. Mishra NK. Choi M. Jeong T. Park J. Kim IS. Eur. J. Org. Chem. 2016; 3611
- 10e Keshri P. Bettadapur KR. Lanke V. Prabhu KR. J. Org. Chem. 2016; 81: 6056
- 10f Bettadapur KR. Lanke V. Prabhu KR. Org. Lett. 2015; 17: 4658
- 10g Lanke V. Bettadapur KR. Prabhu KR. Org. Lett. 2015; 17: 4662
- 10h Miura W. Hirano K. Miura M. Org. Lett. 2015; 17: 4034
- 10i Yu W. Zhang W. Liu Y. Liu Z. Zhang Y. Org. Chem. Front. 2017; 4: 77
- 10j Zhang Z. Han S. Tang M. Ackermann L. Li J. Org. Lett. 2017; 19: 3315
- 10k Muniraj N. Prabhu KR. J. Org. Chem. 2017; 82: 6913
- 10l Zell D. Bursch M. Muller V. Grimme S. Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 10378
- 10m Muniraj N. Prabhu KR. ACS Omega 2017; 2: 4470
- 10n Barsu N. Emayavaramban B. Sundararaju B. Eur. J. Org. Chem. 2017; 4370
- 10o Chen X. Ren J. Xie H. Sun W. Sun M. Wu B. Org. Chem. Front. 2018; 5: 184
- 10p Liu S.-L. Li Y. Guo J.-R. Yang G.-C. Li X.-H. Gong J.-F. Song M.-P. Org. Lett. 2017; 19: 4042
- 10q Zhan B.-B. Li Y. Xu J.-W. Nie X.-L. Fan J. Jin L. Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 5858
- 11a Crider AM. Kolczynski TM. Yates KM. J. Med. Chem. 1980; 23: 324
- 11b Isaka M. Rugseree N. Maithip P. Kongsaeree P. Prabpai S. Thebtaranonth Y. Tetrahedron 2005; 61: 5577
- 11c Uddin J. Ueda K. Siwu ER. O. Kita M. Uemura D. Bioorg. Med. Chem. 2006; 14: 6954
- 11d Cho H. Engers D. Venable D. Niswender C. Lindsley C. Conn P. Emmitte K. Rodriguez A. ACS Chem. Neurosci. 2014; 5: 597
- 11e Cheng C.-F. Lai Z.-C. Lee Y.-J. Tetrahedron 2008; 64: 4347
- 11f Rankin GO. Cressey-Veneziano K. Wang R.-T. Brown PI. J. Appl. Toxicol. 1986; 6: 349
- 11g Deeks ED. Drugs 2015; 75: 1393
- 11h Shoji A. Kuwahara M. Ozaki H. Sawai H. J. Am. Chem. Soc. 2007; 129: 1456
- 11i Luzzio FA. Duveau DY. Lepper ER. Figg WD. J. Org. Chem. 2005; 70: 10117
- 11j Ishiyama T. Tokuda K. Ishibashi T. Ito A. Toma S. Ohno Y. Eur. J. Pharmacol. 2007; 572: 160
- 12a Zhang L. Tan Y. Wang N.-X. Wu Q.-Y. Xi Z. Yang G.-F. Bioorg. Med. Chem. 2010; 18: 7948
- 12b Ibnusaud I. Thomas G. Tetrahedron Lett. 2003; 44: 1247
- 13 Representative Procedure for 1,4-Addition of C(sp3)−H Bonds to Maleimides A mixture of 8-methylquionoline (28.6 mg, 0.2 mmol, 1.0 equiv), N-methylmaleimide (44.4 mg, 0.4 mmol, 2.0 equiv), [Cp*Co(CO)I2] (4.8 mg, 0.01 mmol, 5 mol%), AgOTf (7.7 mg, 0.03 mmol, 15 mol%), and Zn(OAc)2 (11.0 mg, 0.06 mmol, 30 mol%) in HFIP (1.0 mL) was stirred under argon at 100 °C for 24 h. After cooling to room temperature, the solvent was removed under reduced pressure. The contents were subjected to flash chromatography (petrol ether/EtOAc 2:1) to give the product as white solid (46.7 mg, 0.184 mmol, 92%). 1-Methyl-3-(quinolin-8-ylmethyl)pyrrolidine-2,5-dione (3aa) Yellow solid. 1H NMR (400 MHz, CDCl3): δ = 8.90 (dd, J = 1.6, 4.0 Hz, 1 H), 8.14 (dd, J = 1.6, 8.0 Hz, 1 H), 7.73 (dd, J = 1.2, 8.0 Hz, 1 H), 7.57 (d, J = 4.0 Hz, 1 H), 7.46 (t, J = 8.0 Hz, 1 H), 7.41 (dd, J = 4.0, 8.0 Hz, 1 H), 3.97 (dd, J = 8.0, 16.0 Hz, 1 H), 3.54−3.47 (m, 1 H), 3.42−3.36 (m, 1 H), 2.97 (s, 3 H), 2.64 (dd, J = 4.0, 18.4 Hz, 1 H), 2.54 (dd, J = 8.8, 18.4 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 179.84, 176.98, 149.63, 146.84, 136.51, 136.38, 129.99, 128.47, 127.27, 126.25, 121.17, 41.31, 33.73, 32.21, 24.71. HRMS (ESI): m/z [M + Na]+ calcd for C15H14N2O2Na+: 277.0953; found: 277.0987.
- 14 The 1,4-addition product with unprotected maleimide was isolated in no more than 10% yield, accompanied with recovered starting materials.
- 15 Kim KO. Choi T.-L. Macromolecules 2013; 46: 5905
For selected reviews, see:
For selected reviews on sp3 C−H bond activation see:
For selected reports on Pd-catalyzed sp3 C−H activation, see:
For selected reports on Rh(III)-catalyzed sp3 C−H activation, see:
For selected reports on Ir(III)-catalyzed sp3 C−H activation, see:
For selected reports on Ru-catalyzed sp3 C−H activation, see:
For recent reviews, see:
For selected reports on cobalt(III) catalyzed sp3 C−H activation, see:
Rh-catalyzed:
Ru-catalyzed:
Cu-catalyzed:
Co(III)-catalyzed: