RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2018; 50(16): 3250-3256
DOI: 10.1055/s-0037-1609965
DOI: 10.1055/s-0037-1609965
paper
A Metal-Free Approach for Brønsted Acid Promoted C–H Alkylation of Heteroarenes with Alkyl Peroxides
We thank NSFC (Grant Nos. 21502191 and 21672213), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000), The 100 Talents Program, ‘The 1000 Youth Talents Program’, Natural Science Foundation of Fujian Province (Grant No. 2016J01081) and Haixi Institute of CAS (CXZX-2017-P01) for financial support.Weitere Informationen
Publikationsverlauf
Received: 28. März 2018
Accepted after revision: 16. April 2018
Publikationsdatum:
29. Mai 2018 (online)

Abstract
A metal-free protocol for Minisci C–H alkylation of heteroarenes using alkyl peroxides as the alkylating reagents and internal oxidants simultaneously under promotion of Brønsted acid has been demonstrated. A series of alkyl substituted heteroarenes were readily prepared by the C–H alkylation in moderate to good yields. A possible pathway involving the addition of alkyl radical to heterocycle followed by rearomatization is described.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609965.
- Supporting Information
-
References
- 1a Schubert US. Eschbaumer C. Angew. Chem. Int. Ed. 2002; 41: 2892
- 1b Laird T. Org. Process Res. Dev. 2006; 10: 851
- 1c Campeau L.-C. Fagnou K. Chem. Soc. Rev. 2007; 36: 1058
- 1d Welsch ME. Snyder SA. Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
- 1e Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
- 1f Vitaku E. Smith DT. Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 1g Wang D. Weinstein AB. White PB. Stahl SS. Chem. Rev. 2018; 118: 2636
- 2a Colby DA. Bergman RG. Ellman JA. Chem. Rev. 2010; 110: 624
- 2b Brückl T. Baxter RD. Ishihara Y. Baran PS. Acc. Chem. Res. 2012; 45: 826
- 2c Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
- 2d Wei Y. Hu P. Zhang M. Su W. Chem. Rev. 2017; 117: 8864
- 2e Yi H. Zhang G. Wang H. Huang Z. Wang J. Singh AK. Lei A. Chem. Rev. 2017; 117: 9016
- 2f Shang R. Ilies L. Nakamura E. Chem. Rev. 2017; 117: 9086
- 2g Murakami K. Yamada S. Kaneda T. Itami K. Chem. Rev. 2017; 117: 9302
- 3a Schönherr H. Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
- 3b Yang L. Huang H. Chem. Rev. 2015; 115: 3468
- 3c Dong Z. Ren Z. Thompson SJ. Xu Y. Dong G. Chem. Rev. 2017; 117: 9333
- 4a Minisci F. Galli R. Cecere M. Malatesta V. Caronna T. Tetrahedron Lett. 1968; 5609
- 4b Minisci F. Bernardi R. Bertini F. Galli R. Perchinummo M. Tetrahedron 1971; 27: 3575
- 4c Castaldi G. Minisci F. Tortelli V. Vismara E. Tetrahedron Lett. 1984; 25: 3897
- 4d Minisci F. Giordano C. Vismara E. Levi S. Tortelli V. J. Am. Chem. Soc. 1984; 106: 7146
- 4e Minisci F. Vismara E. Fontana F. Morini G. Serravalle M. Giordano G. J. Org. Chem. 1986; 51: 4411
- 4f Minisci F. Vismara E. Fontana F. J. Org. Chem. 1989; 54: 5224
- 4g Minisci F. Fontana F. Pianese G. Yan YM. J. Org. Chem. 1993; 58: 4207
- 5a Minisci F. Synthesis 1973; 1
- 5b Minisci F. Citterio A. Giordano C. Acc. Chem. Res. 1983; 16: 27
- 5c Minisci F. Vismara E. Fontana F. Heterocycles 1989; 28: 489
- 5d Minisci F. Fontana F. Vismara E. J. Heterocycl. Chem. 1990; 27: 79
- 5e Harrowven DC. Sutton BJ. Prog. Heterocycl. Chem. 2005; 16: 27
- 5f Punta C. Minisci F. Trends Heterocycl. Chem. 2008; 13: 1
- 6a Cowden CJ. Org. Lett. 2003; 5: 4497
- 6b Palde PB. McNaughton BR. Ross NT. Gareiss PC. Mace CR. Spitale RC. Miller BL. Synthesis 2007; 2287
- 6c Duncton MA. J. Estiarte MA. Johnson RJ. Cox M. O’Mahony DJ. R. Edwards WT. Kelly MG. J. Org. Chem. 2009; 74: 6354
- 6d Molander GA. Colombel V. Braz VA. Org. Lett. 2011; 13: 1852
- 6e Correia CA. Yang L. Li C.-J. Org. Lett. 2011; 13: 4581
- 6f Fujiwara Y. Dixon JA. O’Hara F. Funder ED. Dixon DD. Rodriguez RA. Baxter RD. Herlé B. Sach N. Collins MR. Ishihara Y. Baran PS. Nature 2012; 492: 95
- 6g Presset M. Fleury-Brégeot N. Oehlrich D. Rombouts F. Molander GA. J. Org. Chem. 2013; 78: 4615
- 6h Xia R. Xie M.-S. Niu H.-Y. Qu G.-R. Guo H.-M. Org. Lett. 2014; 16: 444
- 6i Zhao W.-M. Chen X.-L. Yuan J.-W. Qu L.-B. Duan L.-K. Zhao Y.-F. Chem. Commun. 2014; 50: 2018
- 6j Ma X. Herzon SB. J. Am. Chem. Soc. 2016; 138: 8718
- 6k Mai DN. Baxter RD. Org. Lett. 2016; 18: 3738
- 6l Bordi S. Starr JT. Org. Lett. 2017; 19: 2290
- 6m Ma X. Dang H. Rose JA. Rablen P. Herzon SB. J. Am. Chem. Soc. 2017; 139: 5998
- 7a McNally A. Prier CK. MacMillan DW. C. Science 2011; 334: 1114
- 7b DiRocco DA. Dykstra K. Krska S. Vachal P. Conway DV. Tudge M. Angew. Chem. Int. Ed. 2014; 53: 4802
- 7c Jin J. MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 1565
- 7d Jin J. MacMillan DW. C. Nature 2015; 525: 87
- 7e Li G.-X. Morales-Rivera CA. Wang Y. Gao F. He G. Liu P. Chen G. Chem. Sci. 2016; 7: 6407
- 7f Klauck FJ. R. James MJ. Glorius F. Angew. Chem. Int. Ed. 2017; 56: 12336
- 7g Liu W. Yang X. Zhou Z.-Z. Li C.-J. Chem 2017; 2: 688
- 7h Cheng W.-M. Shang R. Fu Y. ACS Catal. 2017; 7: 907
- 8a Katz RB. Mistry J. Mitchell MB. Synth. Commun. 1989; 19: 317
- 8b Deng G. Ueda K. Yanagisawa S. Itami K. Li C.-J. Chem. Eur. J. 2009; 15: 333
- 8c Antonchick AP. Burgmann L. Angew. Chem. Int. Ed. 2013; 52: 3267
- 8d Bohman B. Berntsson B. Dixon RC. M. Stewart CD. Barrow RA. Org. Lett. 2014; 16: 2787
- 8e Okugawa N. Moriyama K. Togo H. Eur. J. Org. Chem. 2015; 4973
- 8f Tang R.-J. Kang L. Yang L. Adv. Synth. Catal. 2015; 357: 2055
- 8g Braun M.-G. Castanedo G. Qin L. Salvo P. Zard SZ. Org. Lett. 2017; 19: 4090
- 8h Zhang L. Liu Z.-Q. Org. Lett. 2017; 19: 6594
- 9a Li Y. Han Y. Xiong H. Zhu N. Qian B. Ye C. Kantchev EA. B. Bao H. Org. Lett. 2016; 18: 392
- 9b Li Y. Ge L. Qian B. Babu KR. Bao H. Tetrahedron Lett. 2016; 57: 5677
- 9c Babu KR. Zhu N. Bao H. Org. Lett. 2017; 19: 46
- 9d Zhu N. Zhao J. Bao H. Chem. Sci. 2017; 8: 2081
- 9e Jian W. Ge L. Jiao Y. Qian B. Bao H. Angew. Chem. Int. Ed. 2017; 56: 3650
- 9f Zhu X. Ye C. Li Y. Bao H. Chem. Eur. J. 2017; 23: 10254
- 9g Ge L. Li Y. Jian W. Bao H. Chem. Eur. J. 2017; 23: 11767
- 9h Ye C. Li Y. Bao H. Adv. Synth. Catal. 2017; 359: 3720
- 9i Qian B. Chen S. Wang T. Zhang X. Bao H. J. Am. Chem. Soc. 2017; 139: 13076
- 9j Yu F. Wang T. Zhou H. Li Y. Zhang X. Bao H. Org. Lett. 2017; 19: 6538
- 9k Li Y. Ge L. Muhammad MT. Bao H. Synthesis 2017; 49: 5263
- 10 Horn J. Marsden SP. Nelson A. House D. Weingarten GG. Org. Lett. 2008; 10: 4117
- 11 Cho CS. Kim JU. Tetrahedron Lett. 2007; 48: 3775
- 12 Li L.-H. Niu Z.-J. Liang Y.-M. Chem. Eur. J. 2017; 23: 15300
- 13 McCallum T. Barriault L. Chem. Sci. 2016; 7: 4754
- 14 Jo W. Kim J. Choi S. Cho SH. Angew. Chem. Int. Ed. 2016; 55: 9690
- 15 Lee W.-C. Chen C.-H. Liu C.-Y. Yu M.-S. Lin Y.-H. Ong T.-G. Chem. Commun. 2015; 51: 17104
- 16 Cheng WM. Shang R. Fu M.-C. Fu Y. Chem. Eur. J. 2017; 23: 2537
- 17 Sun Y. Jiang H. Wu W. Zeng W. Wu X. Org. Lett. 2013; 15: 1598
Selected reviews on C–H functionalization:
Selected reviews on C–H alkylation:
Selected examples of Minisci reaction:
For selected reviews on the Minisci reaction, see:
Selected examples of metal-mediated Minisci-type C–H alkylation of heteroarenes:
Selected examples of photoredox Minisci-type C–H alkylation of heteroarenes via metal catalysis:
Selected examples of metal-free Minisci-type C–H alkylation of heteroarenes:
Our previous work on the decarboxylation of aliphatic acids:
Review: