Subscribe to RSS
DOI: 10.1055/s-0037-1610027
Selective Synthesis of Carbonates from Glycerol, CO2, and Alkyl Halides Using tert-Butyltetramethylguanidine
This work was supported by JSPS KAKENHI Grant Number 25410197 and the Daicel Award in Synthetic Organic Chemistry, Japan.Publication History
Received: 16 March 2018
Accepted after revision: 30 April 2018
Publication Date:
12 July 2018 (online)

Abstract
Herein, we describe the guanidine-promoted synthesis of carbonates from glycerol, CO2, and alkyl halides. Specifically, a linear tricarbonate (1,2,3-tri-O-butoxycarbonylglycerol), a dicarbonate [butyl (2-oxo-1,3-dioxolan-4-yl)methyl carbonate] containing a linear and a cyclic moiety, and a cyclic monocarbonate (4-hydroxymethyl-2-oxo-1,3-dioxolan) were selectively obtained in good yields, which were strongly affected by the steric bulkiness of the guanidine group substituents. The developed method exhibits the advantages of high efficiency and mild conditions, thus being a powerful tool for the synthesis of value-added products from industrial by-products.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610027.
- Supporting Information
-
References and Notes
- 1a Sakakura T. Choi J.-C. Yasuda H. Chem. Rev. 2007; 107: 2365
- 1b Darensbourg DJ. Chem. Rev. 2007; 107: 2388
- 1c Aresta M. Dibenedetto A. Angelini A. Chem. Rev. 2014; 114: 1709
- 1d Liu Q. Wu L. Jackstell R. Beller M. Nature. Commun. 2015; 6: 5933
- 1e Otto A. Grube T. Schiebahn S. Stolten D. Energy Environ. Sci. 2015; 8: 3283
- 2a Behr A. Eilting J. Irawadi K. Leschinski J. Lindner F. Green Chem. 2008; 10: 13
- 2b Zhou C.-H. Beltramini JN. Fan Y.-X. Lu GQ. Chem. Soc. Rev. 2008; 37: 527
- 2c Gu Y. Jérôme F. Green Chem. 2010; 12: 1127
- 2d García JI. García-Marín H. Pires E. Green Chem. 2014; 16: 1007
- 2e Sutter M. Silva ED. Duguet N. Raoul Y. Métay E. Lemaire M. Chem. Rev. 2015; 115: 8609
- 3a Rokicki G. Rakoczy P. Parzuchowski P. Sobiecki M. Green Chem. 2005; 7: 529
- 3b Schäffner B. Schäffner F. Verevkin SP. Börner A. Chem. Rev. 2010; 110: 4554
- 3c Ma J. Song J. Liu H. Liu J. Zhang Z. Jiang T. Fan H. Han B. Green Chem. 2012; 14: 1743
- 4a Ochoa-Gómez JR. Gómez-Jiménez-Aberasturi O. Ramírez-López C. Belsué M. Org. Process Res. Dev. 2012; 16: 389
- 4b Sonnati MO. Amigoni S. Taffin de Givenchy EP. Darmanin T. Choulet O. Guittard F. Green Chem. 2013; 15: 283
- 5a Togashi H. Sawada H. JP 06087792A, 1994
- 5b Dankers PY. W. Zhang Z. Wisse E. Grijpma DW. Sijbesma RP. Feijen J. Meijer EW. Macromolecules 2006; 39: 8763
- 5c Bell GA. Ramsay JL. Nouvel NI. US. Pat. Appl 20150250163A1, 2015
- 6a Satsuma M. Kishi Y. Uetani Y. Nishiguchi K. JP 2008288128A, 2008
- 6b Ikesu S. Kokeguchi N. JP 2009086582A, 2009
- 6c Tale NV. Jagtap RN. Tathe DS. Des. Monomers Polym. 2014; 17: 147
- 7a Aresta M. Dibenedetto A. Nocito F. Pastore C. J. Mol. Catal. A: Chem. 2006; 257: 149
- 7b George J. Patel Y. Pillai SM. Munshi P. J. Mol. Catal. A: Chem. 2009; 304: 1
- 7c Ozorio LP. Pianzolli R. Machado da Cruz L. Miranda JL. Turci CC. Guerra AC. O. Souza-Aguiar EF. Mota CJ. A. Appl. Catal. A: Gen. 2015; 504: 187
- 7d Li H. Jiao X. Li L. Zhao N. Xiao F. Wei W. Sun Y. Zhang B. Catal. Sci. Technol. 2015; 5: 989
- 7e Zhang J. He D. J. Chem. Technol. Biotechnol. 2015; 90: 1077
- 7f Liu J. Li Y. Zhang J. He D. Appl. Catal. A: Gen. 2016; 513: 9
- 8a Lim YN. Lee C. Jang H.-Y. Eur. J. Org. Chem. 2014; 1823
- 8b Zhou Z.-H. Song Q.-W. He L.-N. ACS Omega 2017; 2: 337
- 9a Hori Y. Nagano Y. Fukuhara T. Teramoto S. Taniguchi H. Nippon Kagaku Kaishi 1987; 1408
- 9b Oi S. Kuroda Y. Matsuno S. Inoue Y. Nippon Kagaku Kaishi 1993; 985
- 9c McGhee W. Riley D. J. Org. Chem. 1995; 60: 6205
- 9d Kim S.-I. Chu F. Dueno EE. Jung KW. J. Org. Chem. 1999; 64: 4578
- 9e Salvatore RN. Flanders VL. Ha D. Jung KW. Org. Lett. 2000; 2: 2797
- 9f Shi M. Shen Y.-M. Molecules 2002; 7: 386
- 9g Yamazaki Y. Kakuma K. Du Y. Saito S. Tetrahedron 2010; 66: 9675
- 9h Kitamura T. Inoue Y. Maeda T. Oyamada J. Synth. Commun. 2016; 46: 39
- 10 Mizuno T. Nakai T. Mihara M. Heteroatom Chem. 2010; 21: 99
- 11 Mizuno T. Nakai T. Mihara M. Heteroatom Chem. 2010; 21: 541
- 12 Mizuno T. Mihara M. Nakai T. Iwai T. Ito T. Synthesis 2007; 2524
- 13 General Procedure for the Synthesis of Linear Tricarbonates 1 Using Base B A stainless steel autoclave was charged with glycerol (1 mmol), base B (6 mmol), and NMP (1 mL), flushed three times with CO2, and finally charged with CO2 to 0.7 MPa at room temperature. The obtained mixture was magnetically stirred at 25 °C for 1 h, and an alkyl halide (10 mmol) was added at room temperature after CO2 evacuation, followed by repeated CO2 flushing/charging to 0.7 MPa. The reaction mixture was magnetically stirred at 25 °C for 18 h under 0.7 MPa pressure of CO2. After EtOAc was added to the resulting mixture to precipitate the dissolved salt, the salt was removed with a Buchner funnel and washed with EtOAc. The combined filtrate was concentrated in vacuo, and the obtained product ratios were determined by 1H NMR spectroscopic measurements. The crude product was purified by silica gel column chromatography, affording linear tricarbonates 1. 1,2,3-Tri-O-(2-butynyloxy)carbonylglycerol (1j) IR (neat): 2959, 2924, 2323, 2241, 1756, 1442, 1384, 1237, 1156, 961, 923, 789 cm–1. 1H NMR (600 MHz, CDCl3): δ = 1.87 (t, J = 2.4 Hz, 9 H), 4.32 (dd, J = 12.0, 6.0 Hz, 2 H), 4.44 (dd, J = 12.0, 4.8 Hz, 2 H), 4.70–4.73 (m, 6 H), 5.12–5.15 (m, 1 H) ppm. 13C NMR (151 MHz, CDCl3): δ = 3.59, 56.61, 56.72, 65.26, 72.12, 72.20, 72.71, 84.45, 84.54, 153.74, 154.16 ppm. HRMS (ESI): m/z calcd for C18H20NaO9 [M + Na]+: 403.1005; found: 403.1004.
- 14 General Procedure for the Synthesis of Cyclic Carbonates (2a and 3) Using Base B Glycerol (1 mmol), base B (2 or 6 mmol), and NMP (1 mL) were added to a glass vessel connected to an injection port equipped with a three-way cock. The vessel was charged with CO2 from a balloon, and it was stirred at 25 °C for 1 h. An alkyl bromide (2 or 6 mmol) was added dropwise at 50 °C for 3 h under 0.1 MPa of CO2 pressure and further stirred for another 1 h. The workup and purification were the same as those reported in the general procedure for the synthesis of compound 1. 2-Butynyl (2-oxo-1,3-dioxolan-4-yl)methyl carbonate (2j) IR (neat): 2960, 2925, 2322, 2241, 1798, 1758, 1394, 1267, 1170, 1088, 1053, 951, 789, 772 cm–1. 1H NMR (600 MHz, CDCl3): δ = 1.87 (t, 1.8 Hz, 3 H), 4.33 (dd, J = 12.6, 4.2 Hz, 1 H), 4.36 (dd, J = 9.0, 6.6 Hz, 1 H), 4.45 (dd, J = 12.6, 4.2 Hz, 1 H), 4.57 (t, J = 9.0 Hz, 1 H), 4.73 (q, J = 1.8 Hz, 2 H), 4.92–4.96 (m, 1 H) ppm. 13C NMR (151 MHz, CDCl3): δ = 3.63, 56.98, 65.71, 66.09, 71.96, 73.24, 84.83, 154.05, 154.13 ppm. HRMS (ESI): m/z calcd for C9H10NaO6 [M + Na]+: 237.0375; found: 237.0368.
- 15 Tryznowski M. Żotek-Tryzowska Z. Świderska A. Parzuchowski PG. Green Chem. 2016; 18: 802
Selected reviews on CO2 as a carbon source in organic synthesis:
Selected reviews on glycerol as a starting material:
Selected reviews and examples on organic carbonates obtained from glycerol or/and CO2: