Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(13): 1749-1752
DOI: 10.1055/s-0037-1610172
DOI: 10.1055/s-0037-1610172
letter
A Protocol for Direct Stereospecific Amination of Primary, Secondary, and Tertiary Alkylboronic Esters
This work was supported by the NIH (NIGMS 59417).Further Information
Publication History
Received: 03 April 2018
Accepted after revision: 11 May 2018
Publication Date:
20 June 2018 (online)

◊These authors contributed equally this work
Abstract
The direct, stereospecific amination of alkylboronic and borinic esters can be conducted by treatment of the organoboron compound with methoxyamine and potassium tert-butoxide. In addition to being stereospecific, this process also enables the direct amination of tertiary boronic esters in an efficient fashion.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610172.
- Supporting Information
-
References and Notes
- 1a Sandford C. Aggarwal VK. Chem. Commun. 2017; 53: 5481
- 1b Starkov P. Jamison TF. Marek I. Chem. Eur. J. 2015; 21: 5278
- 1c Zhu C. Falck JR. Adv. Synth. Catal. 2014; 356: 2395
- 2a Brown HC. Heydkamp WR. Breuer E. Murphy WS. J. Am. Chem. Soc. 1964; 86: 3565
- 2b Brown HC. Suzui A. Sonao S. Itoh M. Midland MM. J. Am. Chem. Soc. 1971; 93: 4329
- 2c Brown HC. Midland MM. Levy AB. J. Am. Chem. Soc. 1972; 94: 2114
- 2d Genêt J.-P. Hajicek J. Bischoff L. Greck C. Tetrahedron Lett. 1992; 33: 2677
- 2e Rucker RP. Whittaker AM. Dang H. Lalic G. J. Am. Chem. Soc. 2012; 134: 6571
- 3a Zhu C. Li G. Ess DH. Falck JR. Kürti L. J. Am. Chem. Soc. 2012; 134: 18253
- 3b Voth S. Hollett JW. McCubbin JA. J. Org. Chem. 2015; 80: 2545
- 3c Ou L. Shao J. Zhang G. Yu Y. Tetrahedron 2011; 52: 1430
- 3d Larrosa M. Guerrero C. Rodríguez R. Cruces J. Synlett 2010; 2101
- 3e Chatterjee N. Arfeen M. Bharatam PV. Goswami A. J. Org. Chem. 2016; 81: 5120
- 3f Chatterjee N. Goswami A. Org. Biomol. Chem. 2015; 13: 7940
- 3g Qi H.-L. Chen D.-S. Ye J.-S. Huang J.-M. J. Org. Chem. 2013; 78: 7482
- 4a Brown HC. Kim K.-W. Srebnik M. Singaram B. Tetrahedron 1987; 43: 4071
- 4b Hoffmann RW. Hölzer B. Knopff O. Org. Lett. 2001; 3: 1945
- 4c Brown HC. Kim K.-W. Cole TE. Singaram B. J. Am. Chem. Soc. 1986; 108: 6761
- 4d Rangaishenvi MV. Singaram B. Brown HC. J. Org. Chem. 1991; 56: 3286
- 5 Xiao Q. Tian L. Tan R. Xia Y. Qui D. Zhang Y. Wang J. Org. Lett. 2012; 14: 4230
- 6a Matteson DS. Kim GY. Org. Lett. 2002; 4: 2153
- 6b Bagutski V. Elford TG. Aggarwal VK. Angew. Chem. Int. Ed. 2011; 50: 1080
- 6c Brown HC. Midland MM. Levy AB. J. Am. Chem. Soc. 1973; 95: 3094
- 6d Carboni B. Vaultier M. Carrie R. Tetrahedron 1987; 43: 1799
- 6e Carboni B. Vaultier M. Carrie R. Tetrahedron Lett. 1988; 29: 1279
- 6f Hupe E. Marek I. Knochel P. Org. Lett. 2002; 4: 2861
- 7 Mlynarski SN. Karns AS. Morken JP. J. Am. Chem. Soc. 2012; 134: 16449
- 8 Aggarwal has accomplished the stereospecific amination of tertiary boronic esters employing multistep route that involves conversion of the boronic ester into a trifluoroborate, chlorination to provide the dichloroborane, and then reaction with benzylazide.6b
- 9 General Procedure In a glove box, a 2-dram vial equipped with magnetic stir bar was charged with t-BuOK (5.0 equiv). The vial was sealed with a septum cap and was removed from the glove box. Toluene and methoxyamine (1.96 M in THF, 3.0 equiv) were added via syringe. Subsequently, the alkyl boronic ester (1.0 equiv) was added as a solution in toluene to achieve a final substrate concentration of 0.2 M. The vial was sealed with tape and left to stir for 16 h at 80 °C behind a blast shield. The reaction mixture was then cooled to room temperature before Boc2O (5.0 equiv) and saturated NaHCO3 were added. After stirring under N2 at 80 °C for 5 h, the mixture was cooled to room temperature, water was added, and the mixture and extracted three times with ethyl acetate. Drying (Na2SO4), filtration, and purification on silica gel delivered the final product. Product from 10 1H NMR (600 MHz, CDCl3): δ = 7.32–7.26 (m, 2 H), 7.24–7.14 (m, 3 H), 4.29 (br s, 1 H), 3.82 (br s, 1 H), 2.76 (br m, 2 H), 1.52–1.91 (m, 15 H), 0.87 (t, J = 6.7 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 155.6, 138.5, 129.7, 128.4, 126.3, 79.1, 51.7, 41.5, 34.0, 28.5, 28.3, 22.7, 14.2. IR (neat): νmax = 3339.4 (m), 2958.1 (m), 2928.4 (m), 2857.0 (w), 1699.6 (m), 1683.0 (s), 1524.6 (s), 1454.7 (w), 1363.5 (m), 1251.4 (s), 1169.2 (s), 1045.4 (m), 1014.2 (m), 743.3 (w), 699.0 (m) cm–1. HRMS (DART+) for C17H28NO2 [M + H]+ calcd: 278.2120; found: 278.2107. [α]D 20 –15.953 (c = 0.890, CHCl3, l = 50 mm). Product from 19 1H NMR (600 MHz, CDCl3): δ = 7.36–7.30 (m, 4 H), 7.30–7.26 (m, 1 H), 4.50 (s, 2 H), 3.48 (t, J = 6.5 Hz, 2 H), 1.62 (p, J = 6.5 Hz, 2 H), 1.47 (br s, 2 H), 1.43–1.33 (m, 4 H), 1.08 (s, 6 H). 13C NMR (150 MHz, CDCl3): δ = 138.7, 128.5, 127.8, 127.6, 73.0, 70.4, 49.7, 44.9, 30.5, 30.3, 21.3. IR (neat): νmax = 2935.3 (br), 2860.1 (w), 1453.9 (w), 1362.9 (m), 1100.0 (s), 841.9 (br), 733.0 (s), 696.4 (s) cm–1. HRMS (DART+) for C14H23NO [M + H]+ calcd: 222.1858; found: 222.1852.
- 10 Voth S. Hollett JW. McCubbin JA. J. Org. Chem. 2015; 80: 2545
For reviews, see:
For a recent copper-catalyzed amination of primary 9-BBN boranes, see: