Synlett 2018; 29(19): 2481-2492
DOI: 10.1055/s-0037-1610217
account
© Georg Thieme Verlag Stuttgart · New York

Intermolecular Stereoselective Iridium-Catalyzed Allylic Alkylation: An Evolutionary Account

Samantha E. Shockley
,
J. Caleb Hethcox
,
Brian M. Stoltz*
The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125, USA   Email: stoltz@caltech.edu
› Author Affiliations
Support for our program has been made available from the NIH-NIGMS (R01GM080269) and Caltech. Additionally, J.C.H. thanks the Camille and Henry Dreyfus postdoctoral program in Environmental Chemistry, and S.E.S. thanks the NIH-NIGMS for a predoctoral fellowship (F31GM120804).
Further Information

Publication History

Received: 28 May 2018

Accepted after revision: 25 June 2018

Publication Date:
15 August 2018 (online)


These authors contributed equally

Abstract

Our lab has long been interested in the development of methods for the creation of enantioenriched all-carbon quaternary stereocenters. Historically, our interest has centered on palladium-catalyzed allylic alkylation, though recent efforts have moved to include the study of iridium catalysts. Whereas palladium catalysts enable the preparation of isolated stereocenters, the use of iridium catalysts allows for the direct construction of vicinal stereocenters via an enantio-, diastereo-, and regioselective allylic alkylation. This Account details the evolution of our research program from inception, which focused on the first iridium-catalyzed allylic alkylation to prepare stereodyads containing a single quaternary stereocenter, to our most recent discovery that allows for the synthesis of vicinal quaternary centers.

1 Introduction

2 Synthesis of Vicinal Tertiary and All-Carbon Quaternary Stereocenters via Enantio- and Diastereoselective Iridium-Catalyzed Allylic Alkylation

2.1 Cyclic Nucleophiles

2.2 Acyclic Nucleophiles

2.3 Alkyl-Substituted Electrophiles

3 Umpoled Iridium-Catalyzed Allylic Alkylation Reactions

3.1 Tertiary Allylic Stereocenters

3.2 Quaternary Allylic Stereocenters

4 Synthesis of Vicinal All-Carbon Quaternary Centers via Enantio­selective Iridium-Catalyzed Allylic Alkylation

5 Summary and Future Outlook

 
  • References and Notes

  • 1 Liu Y. Han S.-J. Liu W.-B. Stoltz BM. Acc. Chem. Res. 2015; 48: 740
  • 2 Behena DC. Mohr JT. Sherden NH. Marinescu SC. Harned AM. Tani K. Seto M. Ma S. Novák Z. Krout MR. McFadden RM. Roizen JL. Enquist JA. Jr. White DE. Levine SR. Petrova KV. Iwashita A. Virgil SC. Stoltz BM. Chem. Eur. J. 2011; 17: 14199

    • For select examples, see:
    • 3a Reeves CM. Eidamshaus C. Kim J. Stoltz BM. Angew. Chem. Int. Ed. 2013; 52: 6718
    • 3b Korch KM. Eidamshaus C. Behenna DC. Nam S. Horne D. Stoltz BM. Angew. Chem. Int. Ed. 2015; 54: 179
    • 3c Numajiri Y. Jiménez-Osés G. Wang B. Houk KN. Stoltz BM. Org. Lett. 2015; 17: 1082
    • 3d Craig II RA. Loskot SA. Mohr JT. Behenna DC. Harned AM. Stoltz BM. Org. Lett. 2015; 17: 5160
  • 4 Enquist Jr JA. Stoltz BM. Nature 2008; 453: 1228
  • 5 McFadden RM. Stoltz BM. J. Am. Chem. Soc. 2006; 128: 7738
  • 6 Numajiri Y. Pritchett BP. Chiyoda K. Stoltz BM. J. Am. Chem. Soc. 2015; 137: 1040
  • 7 Tsuji J. Takahashi H. Morikawa M. Tetrahedron Lett. 1965; 6: 4387
  • 8 Takeuchi R. Kashio M. Angew. Chem. Int. Ed. 1997; 36: 263

    • For examples where palladium-catalyzed allylic alkylation favors branched products, see:
    • 9a Prétôt R. Pfaltz A. Angew. Chem. Int. Ed. 1998; 37: 323
    • 9b Hayashi T. Kawatsura M. Uozumi Y. J. Am. Chem. Soc. 1998; 120: 1681
    • 9c You S.-L. Zhu X.-Z. Luo Y.-M. Hou X.-L. Dai L.-X. J. Am. Chem. Soc. 2001; 123: 7471
    • 9d Zheng W.-H. Sun N. Hou X.-L. Org. Lett. 2005; 7: 5151
    • 9e Zheng W.-H. Zheng B.-H. Zhang Y. Hou X.-L. J. Am. Chem. Soc. 2007; 129: 7718
    • 9f Liu W. Chen D. Zhu X.-Z. Wan X.-L. Hou X.-L. J. Am. Chem. Soc. 2009; 131: 8734
    • 9g Fang P. Ding C.-H. Hou X.-L. Dai L.-X. Tetrahedron: Asymmetry 2010; 21: 1176
    • 9h Chen J.-P. Ding C.-H. Liu W. Hou X.-L. Dai L.-X. J. Am. Chem. Soc. 2010; 132: 15493
  • 10 Janssen JP. Helmchen G. Tetrahedron Lett. 1997; 38: 8025
  • 11 Kanayama T. Yoshida K. Miyabe H. Takemoto Y. Angew. Chem. Int. Ed. 2003; 42: 2054
  • 12 Chen W. Hartwig JF. J. Am. Chem. Soc. 2013; 135: 2068
    • 13a In 2013, the Yu group reported an intramolecular enantioselective iridium-catalyzed allylic alkylation to form spiroindolenines containing vicinal all-carbon quaternary and tertiary stereocenters, see: Wu Q.-F. He H. Liu W.-B. You S.-L. J. Am. Chem. Soc. 2010; 132: 11418
    • 13b At the same time as our disclosure (ref. 15), the Carreira group reported an intermolecular enantio- and diastereoselective iridium-catalyzed allylic alkylation reaction to form vicinal all-carbon quaternary and tertiary stereocenters, see: Krautwald S. Sarlah D. Schafroth MA. Carreira EM. Science 2013; 340: 1065
  • 14 Hethcox JC. Shockley SE. Stoltz BM. ACS Catal. 2016; For a review on diastereoselective iridium-catalyzed allylic alkylation, see: 6: 6207
  • 15 Liu W.-B. Reeves CM. Virgil SC. Stoltz BM. J. Am. Chem. Soc. 2013; 135: 10626
  • 16 Liu W.-B. Okamoto N. Alexy EJ. Hong AY. Tran K. Stoltz BM. J. Am. Chem. Soc. 2016; 138: 5234
    • 19a Bartels B. Helmchen G. Chem. Commun. 1999; 741
    • 19b Alexakis A. Polet D. Org. Lett. 2004; 6: 3529
    • 19c Polet D. Alexakis A. Tissot-Croset K. Corminboeuf C. Ditrich K. Chem. Eur. J. 2006; 12: 3596
  • 20 Liu W.-B. Reeves CM. Stoltz BM. J. Am. Chem. Soc. 2013; 135: 17298
  • 21 Hethcox JC. Shockley SE. Stoltz BM. Angew. Chem. Int. Ed. 2016; 55: 16092
  • 22 Zhang X. Liu W.-B. Cheng Q. You S.-L. Organometallics 2016; 35: 2467

    • For selected reviews of asymmetric iridium-catalyzed allylic alkylation, see:
    • 23a Helmchen G. Dahnz A. Dübon P. Schelwies M. Weihofen R. Chem. Commun. 2007; 675
    • 23b Hartwig JF. Pouy MJ. Top. Organomet. Chem. 2011; 34: 169
    • 23c Liu W.-B. Xia JB. You S.-L. Top. Organomet. Chem. 2011; 38: 155
  • 25 Hethcox JC. Shockley SE. Stoltz BM. Org. Lett. 2017; 19: 1527
    • 26a Nemoto H. Kubota Y. Yamamoto Y. J. Org. Chem. 1990; 55: 4515
    • 26b Nemoto H. Li X. Ma R. Suzuki I. Shibuya M. Tetrahedron Lett. 2003; 44: 73
    • 26c Nemoto H. Kawamura T. Miyoshi N. J. Am. Chem. Soc. 2005; 127: 14546
    • 26d Nemoto H. Ma R. Kawamura T. Kamiya M. Shibuya M. J. Org. Chem. 2006; 71: 6038
    • 26e Nemoto H. Kawamura T. Kitasaki K. Yatsuzuka K. Kamiya M. Yoshioka Y. Synthesis 2009; 1694
    • 26f Yang KS. Nibbs AE. Türkmen YE. Rawal VH. J. Am. Chem. Soc. 2013; 135: 16050
    • 26g Yang KS. Rawal VH. J. Am. Chem. Soc. 2014; 136: 16148
    • 26h Kagawa N. Nibbs AE. Rawal VH. Org. Lett. 2016; 18: 2363
    • 27a Kociołek K. Leplawy MT. Synthesis 1977; 778
    • 27b Kubota Y. Nemoto H. Yamamoto Y. J. Org. Chem. 1991; 56: 7195
    • 27c Nemoto H. Ma R. Ibaragi T. Suzuki I. Shibuya M. Tetrahedron 2000; 56: 1463
    • 27d Yamatsugu K. Kanai M. Shibasaki M. Tetrahedron 2009; 65: 6017
    • 27e Yang KS. Nibbs AE. Türkmen YE. Rawal VH. J. Am. Chem. Soc. 2013; 135: 16050
    • 27f Yang KS. Rawal VH. J. Am. Chem. Soc. 2014; 136: 16148
    • 27g Kagawa N. Nibbs AE. Rawal VH. Org. Lett. 2016; 18: 2363
  • 28 Shockley SE. Hethcox JC. Stoltz BM. Angew. Chem. Int. Ed. 2017; 56: 11545
  • 29 At the time of publication, a singular example of an iridium-catalyzed allylic alkylation reaction producing a product bearing an allylic all-carbon stereocenter has been reported with 11% yield and 21% ee: Onodera G. Watabe K. Matsubara M. Oda K. Kezuka S. Takeuchi R. Adv. Synth. Catal. 2008; 350: 2725
    • 30a Madrahimov ST. Hartwig JF. J. Am. Chem. Soc. 2012; 134: 8136
    • 30b Madrahimov ST. Li Q. Sharma A. Hartwig JF. J. Am. Chem. Soc. 2015; 137: 14968
  • 31 Defieber C. Ariger MA. Moriel P. Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 3139

    • For examples of the formation of active iridicycles, see:
    • 32a Welter C. Koch O. Lipowsky G. Helmchen G. Chem. Commun. 2004; 896
    • 32b Jiang X. Beiger JJ. Hartwig JF. J. Am. Chem. Soc. 2017; 139: 87
    • 32c Liu W.-B. Zheng C. Zhuo C.-X. Dai L.-X. You S.-L. J. Am. Chem. Soc. 2012; 134: 4812
  • 33 Rössler SL. Krautwald S. Carreira EM. J. Am. Chem. Soc. 2017; 139: 3603
  • 34 Hethcox JC. Shockley SE. Stoltz BM. Angew. Chem. Int. Ed. 2018; 57: 8664