Synthesis, Table of Contents Synthesis 2018; 50(24): 4875-4882DOI: 10.1055/s-0037-1610240 paper © Georg Thieme Verlag Stuttgart · New York Large-Scale Flow Photochemical Synthesis of Functionalized trans-Cyclooctenes Using Sulfonated Silica Gel Ampofo Darko* a Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA , Samantha J. Boyd b Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, USA Email: jmfox@udel.edu , Joseph M. Fox* b Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, USA Email: jmfox@udel.edu › Author Affiliations Recommend Article Abstract Buy Article All articles of this category ‡ These authors contributed equally Abstract Functionalized trans-cyclooctenes are useful bioorthogonal reagents that are typically prepared using a flow photoisomerization method in which the product is captured by AgNO3 on silica gel. While this method is effective, the leaching of silver can be problematic when scaling up syntheses. It is shown here that Ag(I) immobilized on tosic silica gel can be used to capture trans-cyclooctene products at higher loadings without leaching. It is demonstrated that the sulfonated silica gel can be regenerated and reused with similar yields over multiple runs. Nine different trans-cyclooctenes were synthesized, including those commonly utilized in bioorthogonal chemistry as well as new amine and carboxylic acid derivatives. Key words Key wordsflow chemistry - photochemistry - trans-cyclooctene - large scale - bioorthogonal Full Text References References 1 Sletten EM. Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974 2 Patterson DM. Nazarova LA. Prescher JA. ACS Chem. Biol. 2014; 9: 592 3 Lang K. Chin JW. ACS Chem. Biol. 2014; 9: 16 4 McKay CS. Finn MG. Chem. Biol. 2014; 21: 1075 5 Ramil CP. Lin Q. Chem. Commun. 2013; 11007 6 MacKenzie DA. Sherratt AR. Chigrinova M. Cheung LL. W. Pezacki JP. Curr. Opin. Chem. Biol. 2014; 21: 81 7 Rossin R. Robillard MS. Curr. Opin. Chem. Biol. 2014; 21: 161 8 Meyer J.-P. Adumeau P. Lewis JS. Zeglis BM. Bioconjugate Chem. 2016; 27: 2791 9 Cycloadditions in Bioorthogonal Chemistry. Vrabel M. Carell T. Springer International Publishing; Switzerland: 2016 10 Nikić I. Lemke EA. Curr. Opin. Chem. Biol. 2015; 28: 164 11 Lang K. Chin JW. Chem. Rev. 2014; 114: 4764 12 Blackman ML. Royzen M. Fox JM. J. Am. Chem. Soc. 2008; 130: 13518 13 Devaraj NK. Weissleder R. Hilderbrand SA. Bioconjugate Chem. 2008; 19: 2297 14 Devaraj NK. Weissleder R. Acc. Chem. Res. 2011; 44: 816 15 Wu H. Devaraj NK. Top. Curr. Chem. 2015; 374: 3 16 Selvaraj R. Fox JM. Curr. Opin. Chem. Biol. 2013; 17: 753 17 Knall A.-C. Slugovc C. Chem. Soc. Rev. 2013; 42: 5131 18 Darko A. Wallace S. Dmitrenko O. Machovina M. Mehl R. Chin JW. Fox J. Chem. Sci. 2014; 5: 3770 19 Cope AC. J. Am. Chem. Soc. 1962; 84: 3191 20 Hines JN. Peagram MJ. Thomas EJ. Whitham GH. J. Chem. Soc., Perkin Trans. 1 1973; 2332 21 Vedejs E. Snoble KA. J. Fuchs PL. J. Org. Chem. 1973; 38: 1178 22 Corey EJ. Shulman JI. Tetrahedron Lett. 1968; 33: 3655 23 Reese CB. Shaw A. J. Am. Chem. Soc. 1970; 92: 2566 24 Braddock DC. Cansell G. Hermitage SA. White AJ. P. Tetrahedron: Asymmetry 2004; 15: 3123 25 Whitham GH. Wright M. J. Chem. Soc. C 1971; 886 26 Shea KJ. Kim JS. J. Am. Chem. Soc. 1992; 114: 4846 27 Jendralla H. Chem. Ber. 1982; 115: 201 28 Jendralla H. Tetrahedron 1983; 39: 1359 29 Kozma E. Nikić I. Varga BR. Aramburu IV. Kang JH. Fackler OT. Lemke EA. Kele P. ChemBioChem 2016; 17: 1518 30 Prévost M. Woerpel KA. J. Am. Chem. Soc. 2009; 131: 14182 31 Prévost M. Ziller JW. Woerpel KA. Dalton Trans. 2010; 9275 32 Hurlocker B. Hu C. Woerpel KA. Angew. Chem. Int. Ed. 2015; 54: 4295 33 Santucci J. Sanzone JR. Woerpel KA. Eur. J. Org. Chem. 2016; 2933 34 Sanzone JR. Woerpel KA. Angew. Chem. Int. Ed. 2016; 55: 790 35 Tomooka K. Uehara K. Nishikawa R. Suzuki M. Igawa K. J. Am. Chem. Soc. 2010; 132: 9232 36 Igawa K. Ichikawa N. Ano Y. Katanoda K. Ito M. Akiyama T. Tomooka K. J. Am. Chem. Soc. 2015; 137: 7294 37 Igawa K. Machida K. Noguchi K. Uehara K. Tomooka K. J. Org. Chem. 2016; 81: 11587 38 Tomooka K. Komine N. Fujiki D. Nakai T. Yanagitsuru S. J. Am. Chem. Soc. 2005; 127: 12182 39 Miura T. Nakamuro T. Liang C.-J. Murakami M. J. Am. Chem. Soc. 2014; 136: 15905 40 Wang X.-N. Krenske EH. Johnston RC. Houk KN. Hsung RP. J. Am. Chem. Soc. 2015; 137: 5596 41 Wang X.-N. Krenske EH. Johnston RC. Houk KN. Hsung RP. J. Am. Chem. Soc. 2014; 136: 9802 42 Arichi N. Yamada K.-I. Yamaoka Y. Takasu K. J. Am. Chem. Soc. 2015; 137: 9579 43 Inoue Y. Mori T. In CRC Handbook of Organic Photochemistry and Photobiology . Lenci F. Horspool W. CRC Press; Boca Raton: 2003: 1-16 44 Royzen M. Yap GP. A. Fox JM. J. Am. Chem. Soc. 2008; 130: 3760 45 Royzen M. Taylor MT. Deangelis A. Fox JM. Chem. Sci. 2011; 2: 2162 46 Svatunek D. Denk C. Rosecker V. Sohr B. Hametner C. Allmaier G. Fröhlich J. Mikula H. Monatsh. Chem. 2016; 147: 579 47 Billaud EM. F. Shahbazali E. Ahamed M. Cleeren F. Noël T. Koole M. Verbruggen A. Hessel V. Bormans G. Chem. Sci. 2017; 8: 1251 48 Fox J. Fang Y. Zhang H. Huang Z. Scinto S. Yang J. am Ende CW. Dmitrenko O. Johnson DS. Chem. Sci. 2018; 7: 1953 49 Devaraj NK. Upadhyay R. Haun JB. Hilderbrand SA. Weissleder R. Angew. Chem. Int. Ed. 2009; 48: 7013 50 Schoch J. Staudt M. Samanta A. Wiessler M. Jäschke A. Bioconjugate Chem. 2012; 23: 1382 51 Mander LN. Williams CM. Tetrahedron 2016; 72: 1133 52 Christie WW. J. Chromatogr. A 1988; 454: 273 53 Christie WW. J. Lipid Res. 1989; 30: 1471 54 Christie WW. J. Sci. Food Agric. 1990; 52: 573 55 Christie WW. J. High Resolut. Chromatogr. Chromatogr. Commun. 1987; 10: 148 56 Momchilova S. Nikolova-Damyanova B. J. Sep. Sci. 2003; 26: 261 57 The current cost of SiliaBond® Tosic Acid (SCX) silica gel, R60530B, is $3-5/gram, dependent upon quantity purchased 58 For tosic silica gel, the loading of the tosic functional group is lot-dependent, ranging from 0.57 to 0.89 mmol/g 59 Li Z. Cai H. Hassink M. Blackman ML. Brown RC. D. Conti PS. Fox JM. Chem. Commun. 2010; 8043 60 Wang M. Svatunek D. Rohlfing K. Liu Y. Wang H. Giglio B. Yuan H. Wu Z. Li Z. Fox JM. Theranostics 2016; 6: 887 61 Oh C. Kim K. Ham W. Tetrahedron Lett. 1998; 39: 2133 62 O’Brien J. Chintala S. Fox JM. J. Org. Chem. 2018; 83: 7500 63 Dehmlow EV. Plückebaum O. J. Prakt. Chem./Chem.-Ztg. 1996; 338: 303 64 Anciaux AJ. Hubert AJ. Noels AF. Petiniot N. Teyssie P. J. Org. Chem. 1980; 45: 695 65 Ast W. Rheinwald G. Kerber R. Makromol. Chem. 1976; 177: 1349 66 Dommerholt J. Schmidt S. Temming R. Hendriks LJ. A. Rutjes FP. J. T. van Hest JC. M. Lefeber DJ. Friedl P. van Delft FL. Angew. Chem. Int. Ed. 2010; 49: 9422 67 Taylor MT. Blackman ML. Dmitrenko O. Fox JM. J. Am. Chem. Soc. 2011; 133: 9646 68 Bloodworth AJ. Melvin T. Mitchell JC. J. Org. Chem. 1988; 53: 1078 69 Panne P. Fox JM. J. Am. Chem. Soc. 2007; 129: 22 Supplementary Material Supplementary Material Supporting Information