Synthesis 2018; 50(24): 4875-4882
DOI: 10.1055/s-0037-1610240
paper
© Georg Thieme Verlag Stuttgart · New York

Large-Scale Flow Photochemical Synthesis of Functionalized trans-Cyclooctenes Using Sulfonated Silica Gel

Ampofo Darko*
a   Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
,
Samantha J. Boyd
b   Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, USA   Email: jmfox@udel.edu
,
Joseph M. Fox*
b   Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, USA   Email: jmfox@udel.edu
› Author Affiliations
This work was supported by NIH R01EB014354, R01DC014461, and NSF DMR-1506613. Spectra were obtained with instrumentation supported by NIH grants P20GM104316, P30GM110758, S10RR026962, S10OD016267 and NSF grants CHE-0840401, CHE-1229234, and CHE-1048367.
Further Information

Publication History

Received: 19 July 2018

Accepted after revision: 20 July 2018

Publication Date:
20 August 2018 (online)


‡ These authors contributed equally

Abstract

Functionalized trans-cyclooctenes are useful bioorthogonal reagents that are typically prepared using a flow photoisomerization method in which the product is captured by AgNO3 on silica gel. While this method is effective, the leaching of silver can be problematic when scaling up syntheses. It is shown here that Ag(I) immobilized on tosic silica gel can be used to capture trans-cyclooctene products at higher loadings without leaching. It is demonstrated that the sulfonated silica gel can be regenerated and reused with similar yields over multiple runs. Nine different trans-cyclooctenes were synthesized, including those commonly utilized in bioorthogonal chemistry as well as new amine and carboxylic acid derivatives.

Supporting Information

 
  • References

  • 1 Sletten EM. Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974
  • 2 Patterson DM. Nazarova LA. Prescher JA. ACS Chem. Biol. 2014; 9: 592
  • 3 Lang K. Chin JW. ACS Chem. Biol. 2014; 9: 16
  • 4 McKay CS. Finn MG. Chem. Biol. 2014; 21: 1075
  • 5 Ramil CP. Lin Q. Chem. Commun. 2013; 11007
  • 6 MacKenzie DA. Sherratt AR. Chigrinova M. Cheung LL. W. Pezacki JP. Curr. Opin. Chem. Biol. 2014; 21: 81
  • 7 Rossin R. Robillard MS. Curr. Opin. Chem. Biol. 2014; 21: 161
  • 8 Meyer J.-P. Adumeau P. Lewis JS. Zeglis BM. Bioconjugate Chem. 2016; 27: 2791
  • 9 Cycloadditions in Bioorthogonal Chemistry. Vrabel M. Carell T. Springer International Publishing; Switzerland: 2016
  • 10 Nikić I. Lemke EA. Curr. Opin. Chem. Biol. 2015; 28: 164
  • 11 Lang K. Chin JW. Chem. Rev. 2014; 114: 4764
  • 12 Blackman ML. Royzen M. Fox JM. J. Am. Chem. Soc. 2008; 130: 13518
  • 13 Devaraj NK. Weissleder R. Hilderbrand SA. Bioconjugate Chem. 2008; 19: 2297
  • 14 Devaraj NK. Weissleder R. Acc. Chem. Res. 2011; 44: 816
  • 15 Wu H. Devaraj NK. Top. Curr. Chem. 2015; 374: 3
  • 16 Selvaraj R. Fox JM. Curr. Opin. Chem. Biol. 2013; 17: 753
  • 17 Knall A.-C. Slugovc C. Chem. Soc. Rev. 2013; 42: 5131
  • 18 Darko A. Wallace S. Dmitrenko O. Machovina M. Mehl R. Chin JW. Fox J. Chem. Sci. 2014; 5: 3770
  • 19 Cope AC. J. Am. Chem. Soc. 1962; 84: 3191
  • 20 Hines JN. Peagram MJ. Thomas EJ. Whitham GH. J. Chem. Soc., Perkin Trans. 1 1973; 2332
  • 21 Vedejs E. Snoble KA. J. Fuchs PL. J. Org. Chem. 1973; 38: 1178
  • 22 Corey EJ. Shulman JI. Tetrahedron Lett. 1968; 33: 3655
  • 23 Reese CB. Shaw A. J. Am. Chem. Soc. 1970; 92: 2566
  • 24 Braddock DC. Cansell G. Hermitage SA. White AJ. P. Tetrahedron: Asymmetry 2004; 15: 3123
  • 25 Whitham GH. Wright M. J. Chem. Soc. C 1971; 886
  • 26 Shea KJ. Kim JS. J. Am. Chem. Soc. 1992; 114: 4846
  • 27 Jendralla H. Chem. Ber. 1982; 115: 201
  • 28 Jendralla H. Tetrahedron 1983; 39: 1359
  • 29 Kozma E. Nikić I. Varga BR. Aramburu IV. Kang JH. Fackler OT. Lemke EA. Kele P. ChemBioChem 2016; 17: 1518
  • 30 Prévost M. Woerpel KA. J. Am. Chem. Soc. 2009; 131: 14182
  • 31 Prévost M. Ziller JW. Woerpel KA. Dalton Trans. 2010; 9275
  • 32 Hurlocker B. Hu C. Woerpel KA. Angew. Chem. Int. Ed. 2015; 54: 4295
  • 33 Santucci J. Sanzone JR. Woerpel KA. Eur. J. Org. Chem. 2016; 2933
  • 34 Sanzone JR. Woerpel KA. Angew. Chem. Int. Ed. 2016; 55: 790
  • 35 Tomooka K. Uehara K. Nishikawa R. Suzuki M. Igawa K. J. Am. Chem. Soc. 2010; 132: 9232
  • 36 Igawa K. Ichikawa N. Ano Y. Katanoda K. Ito M. Akiyama T. Tomooka K. J. Am. Chem. Soc. 2015; 137: 7294
  • 37 Igawa K. Machida K. Noguchi K. Uehara K. Tomooka K. J. Org. Chem. 2016; 81: 11587
  • 38 Tomooka K. Komine N. Fujiki D. Nakai T. Yanagitsuru S. J. Am. Chem. Soc. 2005; 127: 12182
  • 39 Miura T. Nakamuro T. Liang C.-J. Murakami M. J. Am. Chem. Soc. 2014; 136: 15905
  • 40 Wang X.-N. Krenske EH. Johnston RC. Houk KN. Hsung RP. J. Am. Chem. Soc. 2015; 137: 5596
  • 41 Wang X.-N. Krenske EH. Johnston RC. Houk KN. Hsung RP. J. Am. Chem. Soc. 2014; 136: 9802
  • 42 Arichi N. Yamada K.-I. Yamaoka Y. Takasu K. J. Am. Chem. Soc. 2015; 137: 9579
  • 43 Inoue Y. Mori T. In CRC Handbook of Organic Photochemistry and Photobiology . Lenci F. Horspool W. CRC Press; Boca Raton: 2003: 1-16
  • 44 Royzen M. Yap GP. A. Fox JM. J. Am. Chem. Soc. 2008; 130: 3760
  • 45 Royzen M. Taylor MT. Deangelis A. Fox JM. Chem. Sci. 2011; 2: 2162
  • 46 Svatunek D. Denk C. Rosecker V. Sohr B. Hametner C. Allmaier G. Fröhlich J. Mikula H. Monatsh. Chem. 2016; 147: 579
  • 47 Billaud EM. F. Shahbazali E. Ahamed M. Cleeren F. Noël T. Koole M. Verbruggen A. Hessel V. Bormans G. Chem. Sci. 2017; 8: 1251
  • 48 Fox J. Fang Y. Zhang H. Huang Z. Scinto S. Yang J. am Ende CW. Dmitrenko O. Johnson DS. Chem. Sci. 2018; 7: 1953
  • 49 Devaraj NK. Upadhyay R. Haun JB. Hilderbrand SA. Weissleder R. Angew. Chem. Int. Ed. 2009; 48: 7013
  • 50 Schoch J. Staudt M. Samanta A. Wiessler M. Jäschke A. Bioconjugate Chem. 2012; 23: 1382
  • 51 Mander LN. Williams CM. Tetrahedron 2016; 72: 1133
  • 52 Christie WW. J. Chromatogr. A 1988; 454: 273
  • 53 Christie WW. J. Lipid Res. 1989; 30: 1471
  • 54 Christie WW. J. Sci. Food Agric. 1990; 52: 573
  • 55 Christie WW. J. High Resolut. Chromatogr. Chromatogr. Commun. 1987; 10: 148
  • 56 Momchilova S. Nikolova-Damyanova B. J. Sep. Sci. 2003; 26: 261
  • 57 The current cost of SiliaBond® Tosic Acid (SCX) silica gel, R60530B, is $3-5/gram, dependent upon quantity purchased
  • 58 For tosic silica gel, the loading of the tosic functional group is lot-dependent, ranging from 0.57 to 0.89 mmol/g
  • 59 Li Z. Cai H. Hassink M. Blackman ML. Brown RC. D. Conti PS. Fox JM. Chem. Commun. 2010; 8043
  • 60 Wang M. Svatunek D. Rohlfing K. Liu Y. Wang H. Giglio B. Yuan H. Wu Z. Li Z. Fox JM. Theranostics 2016; 6: 887
  • 61 Oh C. Kim K. Ham W. Tetrahedron Lett. 1998; 39: 2133
  • 62 O’Brien J. Chintala S. Fox JM. J. Org. Chem. 2018; 83: 7500
  • 63 Dehmlow EV. Plückebaum O. J. Prakt. Chem./Chem.-Ztg. 1996; 338: 303
  • 64 Anciaux AJ. Hubert AJ. Noels AF. Petiniot N. Teyssie P. J. Org. Chem. 1980; 45: 695
  • 65 Ast W. Rheinwald G. Kerber R. Makromol. Chem. 1976; 177: 1349
  • 66 Dommerholt J. Schmidt S. Temming R. Hendriks LJ. A. Rutjes FP. J. T. van Hest JC. M. Lefeber DJ. Friedl P. van Delft FL. Angew. Chem. Int. Ed. 2010; 49: 9422
  • 67 Taylor MT. Blackman ML. Dmitrenko O. Fox JM. J. Am. Chem. Soc. 2011; 133: 9646
  • 68 Bloodworth AJ. Melvin T. Mitchell JC. J. Org. Chem. 1988; 53: 1078
  • 69 Panne P. Fox JM. J. Am. Chem. Soc. 2007; 129: 22