Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(02): 538-544
DOI: 10.1055/s-0037-1610251
DOI: 10.1055/s-0037-1610251
paper
Copper-Catalyzed NaBAr4-Based N-Arylation of Amines
We are grateful to the National Natural Science Foundation of China (No. 21762020), the Natural Science Foundation of Jiangxi Province (No. 20171BAB203006), and the Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University (No. KLFS-KF-201408).Further Information
Publication History
Received: 19 July 2018
Accepted after revision: 25 July 2018
Publication Date:
06 September 2018 (online)
Abstract
Using NaBAr4 as an arylating agent, the formation of carbon–heteroatom bonds by a Cham–Lam cross-coupling reaction in the presence of catalytic copper(II) acetate monohydrate in acetonitrile at room temperature under air is described. The investigation of reaction scope suggests that several aliphatic and aromatic amines are compatible. In particular, the reaction of alkylamine and NaBAr4 proceeds smoothly to offer the corresponding products in good to excellent yields.
Keywords
Cham–Lam cross-coupling reaction - amine - copper acetate monohydrate - tetraphenylborate - N-phenylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610251.
- Supporting Information
-
References
- 1a Lindley J. Tetrahedron 1984; 40: 1433
- 1b Kiyomori A. Marcoux J.-F. Buchwald SL. Tetrahedron Lett. 1999; 40: 2657
- 2a Chan DM. T. Monaco KL. Wang RP. Winters MP. Tetrahedron Lett. 1998; 39: 2933
- 2b Evans DA. Katz JL. West TR. Tetrahedron Lett. 1998; 39: 2937
- 2c Lam PY. S. Clark CG. Saubern S. Adams J. Winters MP. Chan DM. T. Combs A. Tetrahedron Lett. 1998; 39: 2941
- 2d Lam PY. S. Clark CG. Saubern S. Adams J. Averill KM. Chan DM. T. Combs A. Synlett 2000; 674
- 3a Ma XP. Liu FP. Mo DL. Chin. J. Org. Chem. 2017; 37: 1069
- 3b Ley SV. Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
- 4a Qiao JX. Lam PY. S. Synthesis 2011; 829
- 4b Rao KS. Wu TS. Tetrahedron 2012; 68: 7735
- 5 Elliott GI. Konopelski JP. Org. Lett. 2000; 20: 3055
- 6 Sorenson RJ. J. Org. Chem. 2000; 65: 7747
- 7 Lam PY. S. Deudon S. Averill KM. Li RH. He MY. DeShong P. Clark CG. J. Am. Chem. Soc. 2000; 122: 7600
- 8 Kang SK. Lee SH. Lee D. Synlett 2000; 1022
- 9a Collman JP. Zhong M. Org. Lett. 2000; 9: 1233
- 9b Collman JP. Zhong M. Zeng L. Costanzo S. J. Org. Chem. 2001; 66: 1528
- 10 Lam YS. P. Vincent G. Clark CG. Deudon S. Jadhav PK. Tetrahedron Lett. 2001; 42: 3415
- 11 Antilla JC. Buchwald SL. Org. Lett. 2001; 3: 2077
- 13 Chiang GH. Olsson T. Org. Lett. 2004; 6: 3079
- 14a Vantourout JC. Miras HN. Isidro-Liobe A. Sproules S. Watson AJ. B. J. Am. Chem. Soc. 2017; 139: 4769
- 14b Vantourout JC. Law RP. Isidro-Liobe A. Atkinson SJ. Watson AJ. B. J. Org. Chem. 2016; 81: 3942
- 15a Legzdins P. Richter-Addo GB. Einstein FW. B. Jones R. Organometallics 1990; 9: 431
- 15b Bonnesen PV. Puckett CL. Honeychuck RV. Hersh WH. J. Am. Chem. Soc. 1989; 111: 6070
- 16a Legros JY. Fiaud JC. Tetrahedron Lett. 1990; 31: 7453
- 16b Hamasaka G. Sakuraiab F. Uozumi Y. Chem. Commun. 2015; 51: 3886
- 17 Kurosawa H. Ogoshi S. Kawasaki Y. Murai S. Ikeda I. J. Am. Chem. Soc. 1990; 112: 2813
- 18a Catellani M. Chiusoli GP. Concari S. Tetrahedron 1989; 45: 5263
- 18b Ciattini PG. Morera E. Ortar G. Tetrahedron Lett. 1992; 33: 4815
- 18c Bumagin NA. Bykoy VV. Tetrahedron 1997; 53: 14437
- 18d Villemin D. Gömez-Escalonilla MJ. Saint-Clair JF. Tetrahedron Lett. 2001; 42: 635
- 18e Leadbeater NE. Marco M. J. Org. Chem. 2003; 68: 5660
- 18f Wang JX. Yang YH. Wei BG. Synth. Commun. 2004; 34: 2063
- 18g Lu G. Franzén R. Zhang Q. Xu Y. Tetrahedron Lett. 2005; 46: 4255
- 18h Liu G. Cai MZ. Catal. Commun. 2007; 8: 251
- 18i Zhao H. Zheng GM. Sheng SR. Cai MZ. Catal. Commun. 2009; 11: 158
- 18j Vasu D. Hausmann JN. Saito H. Yanagi T. Yorimitsu H. Osuka A. Asian J. Org. Chem. 2017; 6: 1390
- 19 Zeng H. Hua R. J. Org. Chem. 2008; 73: 558
- 20a Shintani R. Tsutsumi Y. Nagaosa M. Nishimura T. Hayashi T. J. Am. Chem. Soc. 2009; 131: 13588
- 20b Shintani R. Isobe S. Takeda M. Hayashi T. Angew. Chem. Int. Ed. 2010; 49: 3795
- 21a Vasu D. Yorimitsu H. Osuka A. Angew. Chem. Int. Ed. 2015; 54: 7162
- 21b Vasu D. Yorimitsu H. Osuka A. Synthesis 2015; 47: 3286
- 21c Shintani R. Takeda M. Tsuji T. Hayashi T. J. Am. Chem. Soc. 2010; 132: 13168
- 22a Wolfe JP. Buchwald SL. J. Org. Chem. 1997; 62: 6066
- 22b Kantam ML. Venkanna GT. Sridhar C. Sreedhar B. Choudary BM. J. Org. Chem. 2006; 71: 9522
- 22c Kosynkin DV. Tour JM. Org. Lett. 2001; 3: 991
- 22d Kataoka N. Shelby Q. Stambuli JP. Hartwig JF. J. Org. Chem. 2002; 67: 5553
- 22e Gao CY. Yang ML. J. Org. Chem. 2008; 73: 1624
- 22f Litvinov VS. Voprosy Khim. Khim. Tekhnol. 1978; 52: 34
- 22g Swapna KA. Kumar V. Reddy VP. Rao KV. J. Org. Chem. 2009; 74: 7514
- 22h Daniels DG. H. Naylor FT. Saunders BC. J. Chem. Soc. 1951; 3433
- 22i Naber JR. Buchwald SL. Angew. Chem. Int. Ed. 2010; 49: 9469
- 22j Abe K. Takahashi M. Kunugi A. Chem. Exp. 1990; 5: 385
- 22k Hajra A. Wei Y. Yoshikai N. Org. Lett. 2012; 14: 5488
- 22l Chen C. Yang LM. J. Org. Chem. 2007; 72: 6324
For some recent reviews, see: