Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(17): 2279-2282
DOI: 10.1055/s-0037-1610257
DOI: 10.1055/s-0037-1610257
letter
Synthesis of β-CF3 Ketones through Copper/Silver Cocatalyzed Oxidative Coupling of Enol Acetates with ICH2CF3
The work was supported by the Planned Science and Technology Project of Hunan Province, China (No. 2015WK3003).Further Information
Publication History
Received: 06 June 2018
Accepted after revision: 29 July 2018
Publication Date:
22 August 2018 (online)
Abstract
A simple method for the synthesis of β-CF3 ketones through copper/silver cocatalyzed oxidative coupling of enol acetates with ICH2CF3 has been developed. Enol acetates were chosen as the source of carbonyl group, giving the β-CF3 ketones in moderate yields. Control experiments imply that a radical process maybe involved in this reaction.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610257.
- Supporting Information
-
References
- 1a Kirsch P. Modern Fluoroorganic Chemistry . Wiley-VCH; Weinheim: 2004
- 1b Uneyama K. Organofluorine Chemistry . Blackwell; Oxford, UK: 2006
- 1c Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley-Blackwell; Chichester, UK: 2009
- 2a Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 2b Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 3a Nie J. Guo HC. Cahard D. Ma JA. Chem. Rev. 2011; 111: 455
- 3b Tomashenko OA. Grushin VV. Chem. Rev. 2011; 111: 4475
- 3c Egami H. Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
- 3d Liu X. Xu C. Wang M. Liu Q. Chem. Rev. 2015; 115: 683
- 3e Charpentier J. Fruh N. Togni A. Chem. Rev. 2015; 115: 650
- 3f Alonso C. Martinez de Marigorta E. Rubiales G. Palacios F. Chem. Rev. 2015; 115: 1847
- 3g Allen AE. MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 4986
- 3h Chu LL. Qing FL. J. Am. Chem. Soc. 2010; 132: 7262
- 3i Parsons AT. Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 9120
- 3j Wang X. Ye YX. Zhang SN. Feng JJ. Xu Y. Zhang Y. Wang JB. J. Am. Chem. Soc. 2011; 133: 16410
- 3k Xu J. Fu Y. Luo DF. Jiang YY. Xiao B. Liu ZJ. Gong TJ. Liu L. J. Am. Chem. Soc. 2011; 133: 15300
- 3l Liu CB. Meng W. Li F. Wang S. Nie J. Ma JA. Angew. Chem. Int. Ed. 2012; 51: 6227
- 3m Zhang XG. Dai HX. Wasa M. Yu JQ. J. Am. Chem. Soc. 2012; 134: 11948
- 3n Jiang XY. Qing FL. Angew. Chem. Int. Ed. 2013; 52: 14177
- 3o Gao P. Shen YW. Fang R. Hao XH. Qiu ZH. Yang F. Yan XB. Wang Q. Gong XJ. Liu XY. Liang YM. Angew. Chem. Int. Ed. 2014; 53: 7629
- 3p Iqbal N. Jung J. Park S. Cho EJ. Angew. Chem. Int. Ed. 2014; 53: 539
- 3q Xu T. Cheung CW. Hu XL. Angew. Chem. Int. Ed. 2014; 53: 4910
- 3r Bagal DB. Kachkovskyi G. Knorn M. Rawner T. Bhanage BM. Reiser O. Angew. Chem. Int. Ed. 2015; 54: 6999
- 3s Liu JB. Chen C. Chu L. Chen ZH. Xu XH. Qing FL. Angew. Chem. Int. Ed. 2015; 54: 11839
- 3t Ma JJ. Yi WB. Lu GP. Cai C. Adv. Synth. Catal. 2015; 357: 3447
- 3u Tang XJ. Dolbier WR. Jr. Angew. Chem. Int. Ed. 2015; 54: 4246
- 4a Pham PV. Nagib DA. MacMillan DW. Angew. Chem. Int. Ed. 2011; 50: 6119
- 4b Novak P. Lishchynskyi A. Grushin VV. J. Am. Chem. Soc. 2012; 134: 16167
- 4c Deb A. Manna S. Modak A. Patra T. Maity S. Maiti D. Angew. Chem. Int. Ed. 2013; 52: 9747
- 4d He ZB. Zhang R. Hu MY. Li LC. Ni CF. Hu JB. Chem. Sci. 2013; 4: 3478
- 4e Cantillo D. de Frutos O. Rincon JA. Mateos C. Kappe CO. Org. Lett. 2014; 16: 896
- 4f Li L. Chen QY. Guo Y. J. Org. Chem. 2014; 79: 5145
- 4g Lu QQ. Liu C. Huang ZY. Ma YY. Zhang J. Lei AW. Chem. Commun. 2014; 14101
- 4h Maji A. Hazra A. Maiti D. Org. Lett. 2014; 16: 4524
- 4i Tomita R. Yasu Y. Koike T. Akita M. Angew. Chem. Int. Ed. 2014; 53: 7144
- 4j Wang YF. Lonca GH. Chiba S. Angew. Chem. Int. Ed. 2014; 53: 1067
- 4k Zhang CP. Wang ZL. Chen QY. Zhang CT. Gu YZ. Xiao JC. Chem. Commun. 2011; 6632
- 5a Yang TP. Li Q. Lin JH. Xiao JC. Chem. Commun. 2014; 1077
- 5b Park S. Joo JM. Cho EJ. Eur. J. Org. Chem. 2015; 4093
- 5c Kananovich DG. Konik YA. Zubrytski DM. Järving I. Lopp M. Chem. Commun. 2015; 8349
- 5d Li Y. Ye ZS. Bellman TM. Chi T. Dai MJ. Org. Lett. 2015; 17: 2186
- 5e He XP. Shu YJ. Dai JJ. Zhang WM. Feng YS. Xu HJ. Org. Biomol. Chem. 2015; 13: 7159
- 5f Zeng YW. Ni CF. Hu JB. Chem. Eur. J. 2016; 22: 3210
- 5g Gao B. Zhao YC. Hu JB. Angew. Chem. Int. Ed. 2015; 54: 638
- 5h Lerch MM. Morandi B. Wickens ZK. Grubbs RH. Angew. Chem. Int. Ed. 2014; 53: 8654
- 5i Liu XW. Xiong F. Huang XP. Xu L. Li PF. Wu XX. Angew. Chem. Int. Ed. 2013; 52: 6962
- 5j Chen ZM. Bai W. Wang SH. Yang BM. Tu YQ. Zhang FM. Angew. Chem. Int. Ed. 2013; 52: 9781
- 5k Tang XJ. Dolbier WR. Angew. Chem. Int. Ed. 2015; 54: 4246
- 5l Bizet V. Pannecoucke X. Renaud JL. Cahard D. Angew. Chem. Int. Ed. 2012; 51: 6467
- 5m Martinez-Erro S. Sanz-Marco A. Gómez AB. Vázquez-Romero A. Ahlquist MS. G. Martín-Matute B. J. Am. Chem. Soc. 2016; 138: 13408
- 5n Tan XQ. Liu ZL. Shen HG. Zhang P. Zhang ZZ. Li CZ. J. Am. Chem. Soc. 2017; 139: 12430
- 5o Umemoto T. Gotoh Y. Bull. Chem. Soc. Jpn. 1987; 60: 3823
- 6a Yi NN. Zhang H. Xu CH. Deng W. Wang RJ. Peng DM. Zeng ZB. Xiang JN. Org. Lett. 2016; 18: 1780
- 6b Huang MW. Li L. Zhao ZG. Chen QY. Guo Y. Synthesis 2015; 47: 3891
- 6c Zhu Y. Gong JW. Wang YH. J. Org. Chem. 2017; 82: 7428
- 7 Miura K. Fujisawa N. Saito H. Wang D. Hosomi A. Org. Lett. 2001; 3: 2591
- 8a Song CX. Cai GX. Farrell TR. Jiang ZP. Li H. Gan LB. Shi ZJ. Chem. Commun. 2009; 6002
- 8b Nishimoto Y. Onishi Y. Yasuda M. Baba A. Angew. Chem. Int. Ed. 2009; 48: 9131
- 8c Lu Y. Li YM. Zhang R. Jin K. Duan CY. J. Fluorine Chem. 2014; 161: 128
- 8d Hernandez EP. Gonzalez BE. A. Bravo GM. V. A. Vargas CA. Tetrahedron 2015; 71: 2234
- 9a Xie LY. Wu YD. Yi WG. Zhu L. Xiang JN. He WM. J. Org. Chem. 2013; 78: 9190
- 9b Xiang JN. Yi NN. Wang RJ. Lu LH. Zou HX. Pan Y. He WM. Tetrahedron 2015; 71: 694
- 9c Yi NN. Wang RJ. Zou HX. He WB. Fu WQ. He WM. J. Org. Chem. 2015; 80: 5023
- 10 Typical Procedure: To a sealed tube were added enol acetate (0.75 mmol), ICH2CF3 (0.5 mmol, 105 mg), Cu(OAc)2·H2O (0.05 mmol, 10 mg), Ag2SO4 (0.1 mmol, 31 mg), Et3N (0.5 mmol, 50 mg), TBHP (1.5 mmol, 193 mg, 70% in water), and CH3CN (1 mL), then the tube was stirred at 100 °C for 24 h. After completion of the reaction, the resulting mixture was diluted with dichloromethane and washed with water. The separated aqueous phase was washed with CH2Cl2. The combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under vacuo. The crude mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate) to afford the desired product 3. 4,4,4-Trifluoro-1-phenylbutan-1-one (3a) Yield: 71 mg (70%); white solid; mp 56–58 °C; 1H NMR (400 MHz, CDCl3): δ = 7.98 (d, J= 7.6 Hz, 2 H), 7.61 (t, J= 7.2 Hz, 1 H), 7.49 (t, J= 7.6 Hz, 2 H), 3.27 (t, J= 7.6 Hz, 2 H), 2.66–2.54 (m, 2 H); 13C NMR (100 MHz, CDCl3): δ = 196.3, 136.1, 133.6, 128.8, 128.0, 127.1 (q, J= 274.2 Hz), 31.2 (d, J= 2.9 Hz), 28.3 (q, J = 29.9 Hz); 19F NMR (376 MHz, CDCl3): δ = –66.45.
For reviews, see:
For selected papers, see:
For selected papers, see: