RSS-Feed abonnieren
DOI: 10.1055/s-0037-1610279
Organic Photoredox Catalysis for Pschorr Reaction: A Metal-Free and Mild Approach to 6H-Benzo[c]chromenes
Financial support from the National Natural Science Foundation of China (NO 21302130 and 21676166) and the Science Technology Department of Zhejiang Province (NO 2014C31141) are acknowledged with thanks.Publikationsverlauf
Received: 30. Juli 2018
Accepted after revision: 22. August 2018
Publikationsdatum:
12. September 2018 (online)

Abstract
An expedient organic photoredox Pschorr reaction has been developed that opens up a synthetic route to 6H-benzo[c]chromenes. The process can be performed under mild conditions by using eosin Y as a photoredox catalyst and acetonitrile as the solvent. The diazonium salts can be either preformed or generated in situ from the corresponding amines with t-BuONO. The process is amenable to gram-sale synthesis of 6H-benzo[c]chromenes, which can be further transformed into both 6H-benzo[c]chromen-6-ones through oxidation or to 6H-benzo[c]chromen-6-amine through sp3 C–H bond amination. The protocol provides an attractive route for the synthesis of a library of 6H-benzo[c]chromes.
Key words
organic photoredox catalysis - Pschorr reaction - diazonium salts - benzochromenes - C–H bond functionalizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610279.
- Supporting Information
-
References and Notes
- 1a Wang C.-S. Dixneuf PH. Soulé J.-F. Chem. Rev. 2018; 118: 7532
- 1b Zhang M. Zhu C. Ye L.-W. Synthesis 2017; 49: 1150
- 1c Xie J. Jin H. Hashmi AS. K. Chem. Soc. Rev. 2017; 46: 5193
- 1d Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 1e Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 1f Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Acc. Chem. Res. 2016; 49: 1911
- 1g Ghosh I. Marzo L. Das A. Shaikh R. König B. Acc. Chem. Res. 2016; 49: 1566
- 1h Tellis JC. Kelly CB. Primer DN. Jouffroy M. Patel NR. Molander GA. Acc. Chem. Res. 2016; 49: 1429
- 1i Courant T. Masson G. J. Org. Chem. 2016; 81: 6945
- 1j Koike T. Akita M. Inorg. Chem. Front. 2014; 1: 562
- 1k Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 1l Narayanam JM. R. Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 2a Sha W. Deng L. Ni S. Mei H. Han J. Pan Y. ACS Catal. 2018; 8: 7489
- 2b Key RJ. Vannucci AK. Organometallics 2018; 37: 1468
- 2c Liang L. Xie M.-S. Wang H.-X. Niu H.-Y. Qu G.-R. J. Org. Chem. 2017; 82: 5966
- 2d Um J. Yun H. Shin S. Org. Lett. 2016; 18: 484
- 2e Chen Y. Feng G. Org. Biomol. Chem. 2015; 13: 4260
- 3a Bai Q.-F. Jin C. He J.-Y. Feng G. Org. Lett. 2018; 20: 2172
- 3b Ouyang X.-H. Cheng J. Li J.-H. Chem. Commun. 2018; 54: 8745
- 3c ElMarrouni A. Ritts CB. Balsells J. Chem. Sci. 2018; 9: 6639
- 3d An X.-D. Yu S. Synthesis 2018; 50: 3387
- 3e Xu G.-Q. Xu J.-T. Feng Z.-T. Liang H. Wang Z.-Y. Qin YQ. Xu P.-F. Angew. Chem. Int. Ed. 2018; 57: 5110
- 3f Shi L. Liu H. Huo L. Dang Y. Wang Y. Yang B. Qiu S. Tan H. Org. Chem. Front. 2018; 5: 1312
- 3g Chatterjee T. Lee DS. Cho EJ. J. Org. Chem. 2017; 82: 4369
- 3h Jin J. MacMillan DW. C. Nature 2015; 525: 87
- 4a Majek M. van Wanglin AJ. Acc. Chem. Res. 2016; 49: 2316
- 4b Yang L. Huang Z. Li G. Zhang W. Cao R. Wang C. Xiao J. Xue D. Angew. Chem. Int. Ed. 2018; 57: 1968
- 4c Natarajan P. Muskan M. Brar NK. Kaur JJ. Org. Chem. Front. 2018; 5: 1527
- 4d Wu Q.-Y. Ao G.-Z. Liu F. Org. Chem. Front. 2018; 5: 2061
- 4e Gualandi A. Rodeghiero G. Della Rocca E. Bertoni F. Marchini M. Perciaccante R. Jansen P. Cerom P. Cozzi PG. Chem. Commun. 2018;
- 4f McManus JB. Onuska NP. R. Nicewicz DA. J. Am. Chem. Soc. 2018;
- 4g Xie P. Fan J. Liu Y. Wo X. Fu W. Loh T.-P. Org. Lett. 2018; 20: 3341
- 4h Yin Y. Dai Y. Jia H. Li J. Bu L. Qiao B. Zhao X. Jiang Z. J. Am. Chem. Soc. 2018; 140: 6083
- 4i Zhao G. Kaur S. Wang T. Org. Lett. 2017; 19: 3291
- 4j McManus JB. Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 2880
- 4k Jiang J. Zhang W.-M. Dai J.-J. Xu J. Xu H.-J. J. Org. Chem. 2017; 82: 3622
- 4l Margrey KA. McManus JB. Bonazzi S. Zecri F. Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 11288
- 4m Griffin JD. Zeller MA. Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 11340
- 4n Xiao T. Dong X. Tang Y. Zhou L. Adv. Synth. Catal. 2012; 354: 3195
- 5a Pschorr R. Chem. Ber. 1896; 29: 496
- 5b Duclos RI. Jr. Tung JS. Rapoport H. J. Org. Chem. 1984; 49: 5243
- 5c Wassmundt FW. Kiesman WF. J. Org. Chem. 1995; 60: 196
- 5d Zhou J. Huang L.-Z. Li Y.-Q. Du Z.-T. Tetrahedron Lett. 2012; 53: 7036
- 5e Moorthy JN. Samanta S. J. Org. Chem. 2007; 72: 9786
- 6a Chakrabarty I. Akram MO. Biswas S. Patil NT. Chem. Commun. 2018; 54: 7223
- 6b Yao C.-J. Sun Q. Rastogi N. König B. ACS Catal. 2015; 5: 2935
- 6c Shu X.-Z. Zhang M. He Y. Frei H. Toste FD. J. Am. Chem. Soc. 2014; 136: 5844
- 6d Verberne-Sutton SD. Quarels RD. Zhai X. Garno JC. Ragains JR. J. Am. Chem. Soc. 2014; 136: 14438
- 6e Hari DP. Hering T. König B. Org. Lett. 2012; 14: 5334
- 6f Hering T. Hari DP. König B. J. Org. Chem. 2012; 77: 10347
- 6g Hari DP. Schroll P. König B. J. Am. Chem. Soc. 2012; 134: 2958
- 7a Cano-Yelo H. Deronzier A. J. Chem. Soc., Perkin Trans. 2 1984; 1093
- 7b Cano-Yelo H. Deronzier A. J. Photochem. 1987; 37: 315
- 8 For a recent report on photoredox approach to 6H-benzo[c]chromenes, see: Deng Q. Tan L. Xu Y. Liu P. Sun P. J. Org. Chem. 2018; 83: 6151
- 9 Sun C.-L. Gu Y.-F. Huang W.-P. Shi Z.-J. Chem. Commun. 2011; 47: 9813
- 10 Chen D. Pan F. Gao J. Yang J. Synlett 2013; 24: 2085
- 11 Natarajan R. Kumar N. Sharma M. Org. Chem. Front. 2016; 3: 1265
- 12 6H-Benzo[c]chromenes 2a–o: Typical Procedure A 10 mL reaction vial was charged with a magnetic stirrer bar, the appropriate diazonium salt (0.20 mmol), eosin Y (1.3 mg, 1 mol%), and anhyd MeCN (2 mL). The vial was sealed and the mixture was then bubbled with N2 for 10 min. After irradiating with 36 W green LEDs for 16 h, the mixture was purified directly by column chromatography (silica gel).
- 13 2,7-Dimethyl-6H-benzo[c]chromene (2i) White crystalline solid; yield: 26.9 mg (64%; 0.2 mmol scale); mp 72–73 °C. IR (film): 2923, 1501, 1459, 1250, 1028, 816, 736 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.58 (d, J = 8.0 Hz, 1 H), 7.55 (d, J = 1.6 Hz, 1 H), 7.29 (dd, J = 8.0, 7.6 Hz, 1 H), 7.14 (d, J = 7.6 Hz, 1 H), 7.06 (dd, J = 8.4, 1.6 Hz, 1 H), 6.91 (d, J = 8.0 Hz, 1 H), 5.16 (s, 2 H), 2.39 (s, 3 H), 2.33 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 152.3, 133.1, 131.3, 130.2, 130.0, 129.9, 129.4, 127.8, 123.9, 122.8, 119.8, 116.8, 65.6, 20.9, 18.5. GC/MS: m/z (%) = 209 (100) [M – H]+, 210 (72) [M]+. HRMS (CI): m/z [M]+ Calcd for C15H14O: 210.1045; found: 210.1048.
For selected reviews on photoredox catalysis, see:
For selected examples on Ru-catalyzed photoredox catalysis, see:
For selected examples on Ir-catalyzed photoredox catalysis, see:
For selected examples on organic photoredox catalysis, see:
Selected examples for Pschorr reaction, see:
For selected examples of diazonium salts involving photoredox catalysis, see:
Photoredox Pschorr reactions, see: