Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml

CC BY-ND-NC 4.0 · Synlett 2019; 30(04): 437-441
DOI: 10.1055/s-0037-1610385
DOI: 10.1055/s-0037-1610385
letter
Oxidative β-Halogenation of Alcohols: A Concise and Diastereoselective Approach to Halohydrins
Financial support from the National Basic Research Program of China (973 Program) (grant No. 2015CB856600), the National Natural Science Foundation of China (Nos. 21602005, 21632001, 21772002), and the State Key Laboratory of Drug Research are greatly appreciated.Further Information
Publication History
Received: 26 August 2018
Accepted after revision: 23 October 2018
Publication Date:
21 November 2018 (online)

Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue
Abstract
β-Halohydrins bearing transformable halo- and hydroxyl groups, are easily converted into various valuable blocks in organic and pharmaceutical synthesis. A diastereoselective β-halogenation of benzylic alcohols was achieved under simple and low-cost conditions, which provided a direct synthesis of β-halohydrins. The simple reaction conditions, easily available reagents, high diastereoselectivities, and additional oxidant-free make this reaction very attractive and practical.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610385.
- Supporting Information
-
References
- 1 Gribble GW. J. Chem. Educ. 2004; 81: 1441
- 2 Dagani MJ, Barda HJ, Benya TJ, Sanders DC. Bromine Compounds in Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2002
- 3 Organic Bromine and Iodine Compounds in The Handbook of Environmental Chemistry. Neilson AH. Springer; Berlin, Heidelberg: 2003
- 4 Buckles RE, Maurer JE. J. Org. Chem. 1953; 18: 1585
- 5 Naimi-Jamal MR, Mokhtari J, Dekamin MG, Kaupp G. Eur. J. Org. Chem. 2009; 3567
- 6a Ren WM, Liu Y, Lu XB. J. Org. Chem. 2014; 79: 9771
- 6b Naeimi H. J. Chin. Chem. Soc. 2008; 55: 1156
- 7 Bhosale SS, Joshi PL, Rao AS. Org. Prep. Proced. Int. 1992; 24: 695
- 8a Vaillancourt FH, Yeh E, Vosburg DA, Garneau-Tsodikova S, Walsh CT. Chem. Rev. 2006; 106: 3364
- 8b Lewis JC, Coelho PS, Arnold FH. Chem. Soc. Rev. 2011; 40: 2003
- 9a Podgoršek A, Zupan M, Iskra J. Angew. Chem. Int. Ed. 2009; 48: 8424
- 9b Yonehara K, Kamata K, Yamaguchi K, Mizuno N. Chem. Commun. 2011; 47: 1692
- 9c Yang L, Lu Z, Stahl SS. Chem. Commun. 2009; 45: 6460
- 9d Podgorsek A, Eissen M, Fleckenstein J, Stavber S, Zupan M, Iskra J. Green Chem. 2009; 11: 120
- 9e Zhang GF, Liu RH, Xu Q, Ma LX, Liang XM. Adv. Synth. Catal. 2006; 348: 862
- 9f Yu T.-Y, Wang Y, Hu X.-Q, Xu P.-F. Chem. Commun. 2014; 50: 7817
- 9g Wang G.-W, Gao J. Green Chem. 2012; 14: 1125
- 9h Adimurthy S, Ghosh S, Patoliya PU, Ramachandraiah G, Agrawal M, Gandhi MR, Upadhyay SC, Ghosh PK, Ranu BC. Green Chem. 2008; 10: 232
- 9i Rana S, Bag S, Patra T, Maiti D. Adv. Synth. Catal. 2014; 356: 2453
- 9j Bedrač L, Iskra J. Adv. Synth. Catal. 2013; 355: 1243
- 10a Sels BF, De Vos DE, Jacobs PA. J. Am. Chem. Soc. 2001; 123: 8350
- 10b Pandit P, Gayen KS, Khamarui S, Chatterjee N, Maiti DK. Chem. Commun. 2011; 47: 6933
- 10c Dewkar GK, Narina SV, Sudalai A. Org. Lett. 2003; 5: 4501
- 10d Yang X, Wu J, Mao X, Jamison TF, Hatton TA. Chem. Commun. 2014; 50: 3245
- 10e Darensbourg DJ, Wilson SJ. J. Am. Chem. Soc. 2011; 133: 18610
- 10f Kozhushkov SI, Yufit DS, de Meijere A. Adv. Synth. Catal. 2005; 347: 255
- 10g Sels B, De Vos D, Buntinx M, Pierard F, Kirsch-De Mesmaeker A, Jacobs P. Nature 1999; 400: 855
- 10h Barluenga J, Gonzalez JM, Campos PJ, Asensio G. Angew. Chem. 1985; 97: 341
- 10i Rao DS, Reddy TR, Babachary K, Kashyap S. Org. Biomol. Chem. 2016; 14: 7529
- 10j Ashikari Y, Shimizu A, Nokami T, Yoshida J. J. Am. Chem. Soc. 2013; 135: 16070
- 11a Jeffrey JL, Terrett JA, MacMillan DW. Science 2015; 349: 1532
- 11b Shi L, Tu Y.-Q, Wang M, Zhang F.-M, Fan C.-A, Zhao Y.-M, Xia W.-J. J. Am. Chem. Soc. 2005; 127: 10836
- 11c Zhang S.-Y, Tu Y.-Q, Fan C.-A, Zhang F.-M, Shi L. Angew. Chem. Int. Ed. 2009; 48: 8761
- 11d Espino CG, Du Bois J. Angew. Chem. Int. Ed. 2001; 40: 598
- 11e Ren Z, Mo F, Dong G. J. Am. Chem. Soc. 2012; 134: 16991
- 11f Wappes EA, Nakafuku KM, Nagib DA. J. Am. Chem. Soc. 2017; 139: 10204
- 11g Bunescu A, Butcher TW, Hartwig JF. J. Am. Chem. Soc. 2018; 140: 1502
- 11h Simmons EM, Hartwig JF. Nature 2012; 483: 70
- 11i Alderson JM, Phelps AM, Scamp RJ, Dolan NS, Schomaker JM. J. Am. Chem. Soc. 2014; 136: 16720
- 11j Espino CG, Wehn PM, Chow J, Du Bois J. J. Am. Chem. Soc. 2001; 123: 6935
- 11k Chen K, Richter JM, Baran PS. J. Am. Chem. Soc. 2008; 130: 7247
- 11l Zalatan DN, Du Bois J. J. Am. Chem. Soc. 2008; 130: 9220
- 11m Hu A, Guo J.-J, Pan H, Tang H, Gao Z, Zuo Z. J. Am. Chem. Soc. 2018; 140: 1612
- 11n Wu X, Wang M, Huan L, Wang D, Wang J, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 1640
- 11o Zhang J, Li Y, Zhang F, Hu C, Chen Y. Angew. Chem. Int. Ed. 2016; 55: 1872
- 11p Wang CY, Harms K, Meggers E. Angew. Chem. Int. Ed. 2016; 55: 13495
- 12a Cami-Kobeci G, Williams JM. J. Synlett 2003; 124
- 12b Ajvazi N, Stavber S. Molecules 2016; 21: 1325
- 12c Klimczyk S, Huang X, Farès C, Maulide N. Org. Biomol. Chem. 2012; 10: 4327
- 13a Song S, Sun X, Li X, Yuan Y, Jiao N. Org. Lett. 2015; 17: 2886
- 13b Liang Y.-F, Li X, Wang X, Zou M, Tang C, Liang Y, Song S, Jiao N. J. Am. Chem. Soc. 2016; 138: 12271
- 13c Liang Y.-F, Wu K, Song S, Li X, Huang X, Jiao N. Org. Lett. 2015; 17: 876
- 13d Song S, Li X, Sun X, Yuan Y, Jiao N. Green Chem. 2015; 17: 3285
- 13e Song S, Zhang Y, Yeerlan A, Zhu B, Liu J, Jiao N. Angew. Chem. Int. Ed. 2017; 56: 2487
- 14a Wu X.-F, Natte K. Adv. Synth. Catal. 2016; 358: 336
- 14b Jones-Mensah E, Karki M, Magolan J. Synthesis 2016; 48: 1421
- 15a Huang H, Tang L, Liu Q, Xi Y, He G, Zhu H. Chem. Commun. 2016; 52: 5605
- 15b Kawaguchi T, Miyata H, Ataka K, Mae K, Yoshida J. Angew. Chem. Int. Ed. 2005; 44: 2413
- 15c Ge W, Wei Y. Green Chem. 2012; 14: 2066
- 15d Chen J, Li G, Xie Y, Liao Y, Xiao F, Deng G.-J. Org. Lett. 2015; 17: 5870
- 15e Mal K, Kaur A, Haque F, Das I. J. Org. Chem. 2015; 80: 6400
- 15f Sun J.-G, Weng W.-Z, Li P, Zhang B. Green Chem. 2017; 19: 1128
- 15g Liang Y.-F, Yuan Y, Shen T, Song S, Jiao N. Chin. J. Chem. 2018; 36: 233
- 15h Mupparapu N, Khan S, Battula S, Kushwaha M, Gupta AP, Ahmed QN, Vishwakarma RA. Org. Lett. 2014; 16: 1152
- 15i Kohmoto S, Kobayashi T, Minami J, Ying X, Yamaguchi K, Karatsu T, Kitamura A, Kishikawa K, Yamamoto A. J. Org. Chem. 2001; 66: 66
- 15j Khenkin AM, Neumann R. J. Org. Chem. 2002; 67: 7075
- 15k Saba S, Rafique J, Braga AL. Adv. Synth. Catal. 2015; 357: 1446
- 16a Tomita R, Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2014; 53: 7144
- 16b Ashikari Y, Nokami T, Yoshida J. J. Am. Chem. Soc. 2011; 133: 11840
- 16c Ashikari Y, Nokami T, Yoshida J. Org. Lett. 2012; 14: 938
- 16d Xu R, Wan J.-P, Mao H, Pan Y. J. Am. Chem. Soc. 2010; 132: 15531
- 16e Wu X, Gao Q, Geng X, Zhang J, Wu YD, Wu A. Org. Lett. 2016; 18: 2507
- 16f Xiang JC, Cheng Y, Wang M, Wu Y, Wu A. Org. Lett. 2016; 18: 4360
- 16g Deshidi R, Kumar M, Devari S, Shah BA. Chem. Commun. 2014; 50: 9533
- 16h Li X, Song S, Jiao N. Acta Chim. Sin. 2017; 75: 1202
- 16i Reddi RN, Prasad PK, Sudalai A. Angew. Chem. Int. Ed. 2015; 54: 14150
- 16j Wu X, Gao Q, Liu S. Wu A. 2014; 16: 2888
- 16k Song S, Huang X, Liang Y.-F, Tang C, Li X, Jiao N. Green Chem. 2015; 17: 2727
- 16l Gao Q, Wu X, Liu S, Wu A. Org. Lett. 2014; 16: 1732
- 16m Gao Q, Zhang J, Wu X, Liu S, Wu A. Org. Lett. 2015; 17: 134
- 17 Majetich G, Hicks R, Reister S. J. Org. Chem. 13
- 18 Karki M, Magolan J. J. Org. Chem. 2015; 80: 3701
- 19a Sayer JR, Wallden K, Pesnot T, Campbell F, Gane PJ, Simone M, Koss H, Buelens F, Boyle TP, Selwood DL, Waksman G, Tabor AB. Bioorg. Med. Chem. 2014; 22: 6459
- 19b Neyyappadath RM, Chisholm R, Greenhalgh MD, Rodríguez-Escrich C, Pericàs MA, Hähner G, Smith AD. ACS Catal. 2018; 8: 1067
- 19c Wei S, Messerer R, Tsogoeva SB. Chem. Eur. J. 2011; 17: 14380
For selected reviews on enzyme-catalyzed oxidative halogenations, see:
For α-functionalization of alcohols, see:
For β-functionalization of alcohols, see:
For γ-functionalization of alcohols, see:
For δ-functionalization of alcohols, see:
For reviews on DMSO as the reagent in organic synthesis, see: