Subscribe to RSS
DOI: 10.1055/s-0037-1610486
Strategic Exploitation of the Wittig Reaction: Facile Synthesis of Heteroaromatics and Multifunctional Olefins
The authors thank the Ministry of Science and Technology of the Republic of China (MOST 104-2113-M-003-002-MY3) for financial support.Publication History
Received: 04 June 2018
Accepted after revision: 21 June 2018
Publication Date:
02 August 2018 (online)
Abstract
In this account, our group’s efforts towards exploring new substrates as precursors for the Wittig reaction have been discussed. Several new strategies developed by our group for the generation of requisite ylides for the Wittig reaction are highlighted. The idea behind the development of some chemoselective and diversity-oriented strategies are discussed in detail in a progressive manner. These strategies encompass a wide range of substrates that are employed for the synthesis of an array of heterocycles and multifunctional olefins and present a huge scope for their application on an industrial level.
1 Introduction
2 Development of New Methods to Effect Intramolecular Wittig Reaction
3 Development of a Catalytic Wittig Reaction
4 New Synthesis of Bis-Heteroarenes
5 Direct β-Acylation of 2-Arylidene-1,3-indandiones
6 Doubly Chemoselective Protocol for the Diversity-Oriented Synthesis of Coumarin Derivatives
7 Conclusion
-
References
- 1a Wittig G. Geissler G. Liebigs Ann. Chem. 1953; 580: 44
- 1b Wittig G. Schöllkopf U. Chem. Ber. 1954; 87: 1318
- 1c Abell A. Edmonds DM. K. Organophosphorus Reagents . Murphy PJ. Oxford University Press; Oxford: 2004: 99
- 1d Edmonds D. Abell A. Modern Carbonyl Olefinations . Takeda T. Wiley-VCH; Weinheim: 2004: 1
- 1e Hoffmann RW. Angew. Chem. Int. Ed. 2001; 40: 1411
- 1f Lawrence NJ. Preparation of Alkenes: A Practical Approach . Williams JM. J. Oxford University Press; Oxford: 1995
- 1g Phosphorus Ylides: Chemistry and Applications in Organic Chemistry . Kolodiazhnyi OI. Wiley-VCH; New York: 1999: 359
- 1h Maryanoff BE. Reitz AB. Mutter MS. Whittle RR. Olofson RA. J. Am. Chem. Soc. 1986; 108: 7664
- 1i Maryanoff BE. Reitz AB. Chem. Rev. 1989; 89: 863
- 2a Rocha D. H. A., Pinto D. C. G. A., Silva A. M. S. in press; doi: 10 1002/ejoc.201800523.
- 2b Das U. Tsai Y.-L. Lin W. Org. Biomol. Chem. 2014; 12: 4044
- 3 Kao T.-T. Syu S. Jhang Y.-W. Lin W. Org. Lett. 2010; 12: 3066
- 4 Chen K.-W. Syu S. Jang Y.-J. Lin W. Org. Biomol. Chem. 2011; 9: 2098
- 5 Jang Y.-J. Syu S. Chen Y.-J. Yang M.-C. Lin W. Org. Biomol. Chem. 2012; 10: 843
- 6 Tsai Y.-L. Das U. Syu S. Lee C.-J. Lin W. Eur. J. Org. Chem. 2013; 4634
- 7 Syu S. Lee Y.-T. Jang Y.-J. Lin W. Org. Lett. 2011; 13: 2970
- 8 Lee C.-J. Jang Y.-J. Wu Z.-Z. Lin W. Org. Lett. 2012; 14: 1906
- 9 Wu Z.-Z. Jang Y.-J. Lee C.-J. Lee Y.-T. Lin W. Org. Biomol. Chem. 2013; 11: 828
- 10 Lee Y.-T. Jang Y.-J. Syu S. Chou S.-C. Lee C.-J. Lin W. Chem. Commun. 2012; 48: 8135
- 11 Lee Y.-T. Lee Y.-T. Lee C.-J. Sheu C.-N. Lin B.-Y. Wang J.-H. Lin W. Org. Biomol. Chem. 2013; 11: 5156
- 12 Tsai Y.-L. Fan Y.-S. Lee C.-J. Huang C.-H. Das U. Lin W. Chem. Commun. 2013; 49: 10266
- 13 Fan Y.-S. Das U. Hsiao M.-Y. Liu M.-S. Lin W. J. Org. Chem. 2014; 79: 11567
- 14 Tsai Y.-L. Syu S. Yang S.-M. Das U. Fan Y.-S. Lee C.-J. Lin W. Tetrahedron 2014; 70: 5038
- 15 Lee C.-J. Tsai C.-C. Hong S.-H. Chang G.-H. Yang M.-C. Moehlmann L. Lin W. Angew. Chem. Int. Ed. 2015; 54: 8502
- 16 O’Brien CJ. Tellez JL. Nixon ZS. Kang LJ. Carter AL. Kunkel SR. Przeworski KC. Chass GA. Angew. Chem. Int. Ed. 2009; 48: 6836
- 17 Tsai Y.-L. Lin W. Asian J. Org. Chem. 2015; 4: 1040
- 18 Schirmer M.-L. Adomeit S. Werner T. Org. Lett. 2015; 17: 3078
- 19 Lee C.-J. Chang T.-H. Yu J.-K. Reddy GM. Hsiao M.-Y. Lin W. Org. Lett. 2016; 18: 3758
- 20 Chen Y.-R. Reddy GM. Hong S.-H. Wang Y.-Z. Yu J.-K. Lin W. Angew. Chem. Int. Ed. 2017; 56: 5106
- 21 Lee C.-J. Sheu C.-N. Tsai C.-C. Wu Z.-Z. Lin W. Chem. Commun. 2014; 50: 5304
- 22 Yang S.-M. Wang C.-Y. Lin C.-K. Karanam P. Reddy GM. Tsai Y.-L. Lin W. Angew. Chem. Int. Ed. 2018; 57: 1668
For original work see
For selected reviews see: