Subscribe to RSS
DOI: 10.1055/s-0037-1610550
Uncovering Multifaceted Iodonium Ylides: Versatile Reactivity Enables Cyclization of Simple Arylamines
We gratefully acknowledge the National Natural Science Foundation of China (21772113, 21302075, 11501454), The Key Research and Development Plan of Shandong Province (2017GGX70109), The Fundamental Research Fund of Shandong University (2017JC004).Publication History
Received: 14 June 2018
Accepted after revision: 07 July 2018
Publication Date:
02 August 2018 (online)
Abstract
Iodonium ylides can undergo cyclization with a simple tertiary arylamine to afford N-heterocyclic products in a transition-metal-free approach in the absence of an additional initiator/oxidant. The inherent reactivity uncovered in this transformation is fundamentally different from known chemical properties of iodonium ylide compounds, thus providing a new opportunity for the further exploration of iodonium ylide-based chemical transformations. This Synpacts article describes the historical background of iodonium ylide chemistry and highlights recent progress disclosed by our work.
1 Introduction
2 The Strategy for New Reaction Discovery
3 Application to Cyclization of Tertiary Arylamines
4 Conclusion and Perspectives
-
References
- 1a Stang PJ. Zhdankin VV. Chem. Rev. 1996; 96: 1123
- 1b Zhdankin VV. Stang PJ. Chem. Rev. 2002; 102: 2523
- 1c Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds. Wiley; New York: 2013
- 1d Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 2 Muller P. Acc. Chem. Res. 2004; 37: 243
- 3a Ochiai M. Kitagawa Y. Yamamoto S. J. Am. Chem. Soc. 1997; 119: 11598
- 3b Huang X.-C. Liu Y.-L. Liang Y. Pi S.-F. Wang F. Li J.-H. Org. Lett. 2008; 10: 1525
- 3c Antos A. Elemes Y. Michaelides A. Nyxas JA. Skoulika S. Hadjiarapoglou LP. J. Org. Chem. 2012; 77: 10949
- 3d Huang H. Yang Y. Zhang X. Zeng W. Liang Y. Tetrahedron Lett. 2013; 54: 6049
- 4 Chelli S. Troshin K. Mayer P. Lakhdar S. Ofial AR. Mayr H. J. Am. Chem. Soc. 2016; 138: 10304
- 5a Zhdankin VV. Stang PJ. Chem. Rev. 2008; 108: 5299
- 5b Malamidou-Xenikaki E. Spyroudis S. Synlett 2008; 2725
- 6 Saito M. Kobayashi Y. Tsuzuki S. Takemoto Y. Angew. Chem. Int. Ed. 2017; 56: 7653
- 7a Kirmse W. Kapps M. Hager RB. Chem. Ber. 1966; 99: 2855
- 7b For an early report on the rearrangement reaction of iodonium ylides, see: Doyle MP. Tamblyn WH. Bagheri V. J. Org. Chem. 1981; 46: 5094
- 8a Xu B. Tambar UK. J. Am. Chem. Soc. 2016; 138: 12073
- 8b Xu B. Tambar UK. Angew. Chem. Int. Ed. 2017; 56: 9868
- 9 Wang X. Studer A. Acc. Chem. Res. 2017; 50: 1712
- 10a Hartmann M. Li Y. Mick-Lichtenfeld C. Studer A. Chem. Eur. J. 2016; 22: 3485
- 10b Telu S. Durmus S. Koser GF. Tetrahedron Lett. 2007; 48: 1863
- 11 Heinen F. Engelage E. Dreger A. Weiss R. Huber SM. Angew. Chem. Int. Ed. 2018; 57: 3830
- 12 Zhao Z. Luo Y. Liu S. Zhang L. Feng L. Wang Y. Angew. Chem. Int. Ed. 2018; 57: 3792
- 13a Wu Y.-J. Heterocyclic Scaffolds II: Topics in Heterocyclic Chemistry, Vol. 26 . Gribble GW. Springer; Heidelberg: 2010
- 13b Pan SC. Beilstein J. Org. Chem. 2012; 8: 1374
- 13c Peng B. Maulide N. Chem. Eur. J. 2013; 19: 13274
- 13d Haibach MC. Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5010
- 13e Yi H. Zhang G. Wang H. Huang Z. Wang J. Singh AK. Lei A. Chem. Rev. 2017; 117: 9016
- 14 Zhou B. Chen Z. Yang Y. Ai W. Tang H. Wu Y. Zhu W. Li Y. Angew. Chem. Int. Ed. 2015; 54: 12121
For an early report on the rearrangement reaction of halonium ylides, see: