Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(14): 1667-1672
DOI: 10.1055/s-0037-1610715
DOI: 10.1055/s-0037-1610715
cluster
Synthesis of Novel C 2-Symmetric Sulfur-Based Catalysts: Asymmetric Formation of Halo- and Seleno-Functionalized Normal- and Medium-Sized Rings
We are grateful for the financial support from the Science and Engineering Research Board (SERB), Department of Science & Technology (DST), New Delhi (EMR/2015/000061). S.J., A.V. and V.R. acknowledge the Indian Institute of Science Education and Research (IISER) Bhopal and UGC, New Delhi for fellowships.Further Information
Publication History
Received: 20 April 2019
Accepted after revision: 25 April 2019
Publication Date:
29 May 2019 (online)
Published as part of the Cluster Organosulfur and Organoselenium Compounds in Catalysis
Abstract
The synthesis of novel, highly functionalized, C 2-symmetric sulfur-based catalysts is developed and their catalytic applications are explored in asymmetric bromo-, iodo- and seleno-functionalizations of alkenoic acids. This protocol provides the corresponding normal- and medium-sized bromo, iodo and selenolactones in up to 98% yield and 83% stereoselectivity.
Key words
alkenoic acids - organosulfur catalysts - asymmetric catalysis - halolactones - selenolactonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610715.
- Supporting Information
-
References and Notes
- 1a Mellegaard-Waetzig SR, Wang C, Tunge JA. Tetrahedron 2006; 62: 7191
- 1b Ahmad SM, Braddock DC, Cansell G, Hermitage SA. Tetrahedron Lett. 2007; 48: 915
- 1c Castellote I, Morón M, Burgos C, Alvarez-Builla J, Martin A, Gómez-Sal P, Vaquero JJ. Chem. Commun. 2007; 1281
- 1d Zhang W, Xu H, Xu H, Tang W. J. Am. Chem. Soc. 2009; 131: 3832
- 1e Cao L, Ding J, Yin G, Gao M, Li Y, Wu A. Synlett 2009; 1445
- 1f Lewis Base Catalysis in Organic Synthesis, 1st ed. Vedejs E, Denmark SE. Wiley-VCH; Weinheim: 2016
- 1g Perin G, Barcellos AM, Peglow TJ, Nobre PC, Cargnelutti R, Lenardão EJ, Marini F, Santi C. RSC Adv. 2016; 6: 103657
- 1h Sancineto L, Mangiavacchi F, Tidei C, Bagnoli L, Marini F, Gioiello A, Scianowski J, Santi C. Asian J. Org. Chem. 2017; 6: 988
- 2a Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
- 2b Denmark SE, Kalyani D, Collins WR. J. Am. Chem. Soc. 2010; 132: 15752
- 2c Denmark SE, Burk MT. Org. Lett. 2012; 14: 256
- 3a Mellegaard SR, Tunge JA. J. Org. Chem. 2004; 69: 8979
- 3b Snyder SA, Treitler DS. Angew. Chem. Int. Ed. 2009; 48: 7899
- 3c Denmark SE, Burk MT. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20655
- 3d Snyder S, Treitler AD. S, Brucks AP. J. Am. Chem. Soc. 2010; 132: 14303
- 3e Chen F, Tan CK, Yeung Y.-Y. J. Am. Chem. Soc. 2013; 135: 1232
- 3f Sawamura Y, Nakatsuji H, Sakakura A, Ishihara K. Chem. Sci. 2013; 4: 4181
- 3g Ke Z, Tan CK, Chen F, Yeung Y.-Y. J. Am. Chem. Soc. 2014; 136: 5627
- 3h Kawato Y, Kubota A, Ono H, Egami H, Hamashima Y. Org. Lett. 2015; 17: 1244
- 3i Ke Z, Tan CK, Liu Y, Lee KG. Z, Yeung Y.-Y. Tetrahedron 2016; 72: 2683
- 3j See JY, Yang H, Zhao Y, Wong MW, Ke Z, Yeung Y.-Y. ACS Catal. 2018; 8: 850
- 4a Dowle MD, Davies DI. Chem. Soc. Rev. 1979; 8: 171
- 4b Cardillo G, Orena M. Tetrahedron 1990; 46: 3321
- 4c French AN, Bissmire S, Wirth T. Chem. Soc. Rev. 2004; 33: 354
- 4d Ranganathan S, Muraleedharan KM, Vaish NK, Jayaraman N. Tetrahedron 2004; 60: 5273
- 4e Laya MS, Banerjee AK, Cabrera EV. Curr. Org. Chem. 2009; 13: 720
- 4f Montana AM, Batalla C, Barcia JA, Montana AM, Batalla C. Curr. Org. Chem. 2009; 13: 919
- 4g Chung W.-j, Vanderwal CD. Angew. Chem. Int. Ed. 2016; 55: 4396
- 5 Cheng YA, Chen T, Tan CK, Heng JJ, Yeung Y.-Y. J. Am. Chem. Soc. 2012; 134: 16492
- 6a Denmark SE, Kuester WE, Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938
- 6b Tan CK, Yeung Y.-Y. Chem. Commun. 2013; 49: 7985
- 6c Cheng YA, Yu WZ, Yeung Y.-Y. Org. Biomol. Chem. 2014; 12: 2333
- 7a Boye AC, Meyer D, Ingison CK, French AN, Wirth T. Org. Lett. 2003; 5: 2157
- 7b Saito B, Fu GC. J. Am. Chem. Soc. 2007; 129: 9602
- 7c Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
- 7d Shiina I. Chem. Rev. 2007; 107: 239
- 7e Gao W.-C, Xiong Z.-Y, Pirhaghani S, Wirth T. Synthesis 2019; 51: 276
- 8a Wong Y.-C, Ke Z, Yeung Y.-Y. Org. Lett. 2015; 17: 4944
- 8b Ke Z, Wong Y.-C, See JY, Yeung Y.-Y. Adv. Synth. Catal. 2016; 358: 1719
- 9a Tripathi CB, Mukherjee S. J. Org. Chem. 2012; 77: 1592
- 9b Tripathi CB, Mukherjee S. Angew. Chem. Int. Ed. 2013; 52: 8450
- 9c Tripathi CB, Mukherjee S. Synlett 2014; 25: 163
- 10a Zhang W, Zheng S, Liu N, Werness JB, Guzei IA, Tang W. J. Am. Chem. Soc. 2010; 132: 3664
- 10b Murai K, Matsushita T, Nakamura A, Fukushima S, Shimura M, Fujioka H. Angew. Chem. Int. Ed. 2010; 49: 9174
- 10c Zhou L, Chen J, Tan CK, Yeung YY. J. Am. Chem. Soc. 2011; 133: 9164
- 10d Castellanos A, Fletcher SP. Chem. Eur. J. 2011; 17: 5766
- 10e Jiang X, Tan CK, Zhou L, Yeung YY. Angew. Chem. Int. Ed. 2012; 51: 7771
- 10f Hennecke U. Chem. Asian J. 2012; 7: 456
- 10g Zhang W, Liu N, Schienebeck CM, Decloux K, Zheng S, Werness JB, Tang W. Chem. Eur. J. 2012; 18: 7296
- 10h Tan CK, Le C, Yeung YY. Chem. Commun. 2012; 48: 5793
- 10i Zhou L, Tay DW, Chen J, Leung GY, Yeung YY. Chem. Commun. 2013; 49: 4412
- 10j Fujioka H, Murai K. Heterocycles 2013; 87: 763
- 10k Armstrong A, Braddock DC, Jones AX, Clark S. Tetrahedron Lett. 2013; 54: 7004
- 10l Tan CK, Yu WZ, Yeung Y.-Y. Chirality 2014; 26: 328
- 10m Zheng S, Schienebeck CM, Zhang W, Wang H.-Y, Tang W. Asian J. Org. Chem. 2014; 3: 366
- 10n Tay DW, Leung GY, Yeung YY. Angew. Chem. Int. Ed. 2014; 53: 5161
- 10o Tan CK, Er JC, Yeung Y.-Y. Tetrahedron Lett. 2014; 55: 1243
- 10p Denmark SE, Burk MT. Chirality 2014; 26: 344
- 10q Chen T, Foo TJ. Y, Yeung Y.-Y. ACS Catal. 2015; 5: 4751
- 10r Samanta RC, Yamamoto H. J. Am. Chem. Soc. 2017; 139: 1460
- 10s Gieuw MH, Ke Z, Yeung YY. Chem. Rec. 2017; 17: 287
- 11a Zhou L, Tan CK, Jiang X, Chen F, Yeung Y.-Y. J. Am. Chem. Soc. 2010; 132: 15474
- 11b Tan CK, Zhou L, Yeung Y.-Y. Org. Lett. 2011; 13: 2738
- 11c Chen J, Zhou L, Yeung Y.-Y. Org. Biomol. Chem. 2012; 10: 3808
- 11d Chen J, Zhou L, Tan CK, Yeung Y.-Y. J. Org. Chem. 2012; 77: 999
- 12a Balkrishna SJ, Prasad CD, Panini P, Detty MR, Chopra D, Kumar S. J. Org. Chem. 2012; 77: 9541
- 12b Verma A, Jana S, Durga Prasad C, Yadav A, Kumar S. Chem. Commun. 2016; 52: 4179
- 12c Balkrishna SJ, Kumar S, Kumar A, Panini P, Kumar S. Proc. Natl. Acad. Sci., India Sect. A: Phys. Sci. 2016; 86: 589
- 13 Illuminati G, Mandolini L. Acc. Chem. Res. 1981; 14: 95
- 14a Kumar S, Yan J, Poon J.-F, Singh VP, Lu X, Ott MK, Engman L, Kumar S. Angew. Chem. Int. Ed. 2016; 55: 3729
- 14b Prasad ChD, Sattar M, Kumar S. Org. Lett. 2017; 19: 774
- 14c Rathore V, Upadhyay A, Kumar S. Org. Lett. 2018; 20: 6274
- 15a Li H, Wang Y, Tang L, Deng L. J. Am. Chem. Soc. 2004; 126: 9906
- 15b Liu X, Li H, Deng L. Org. Lett. 2005; 7: 167
- 15c Choudhury AR, Mukherjee S. Org. Biomol. Chem. 2012; 10: 7313
- 16 Cassani C, Martín-Rapún R, Arceo E, Bravo F, Melchiorre P. Nat. Protoc. 2013; 8: 325
- 17a Khokhar SS, Wirth T. Eur. J. Org. Chem. 2004; 4567
- 17b Khokhar SS, Wirth T. Angew. Chem. Int. Ed. 2004; 43: 631
- 17c Niu W, Yeung Y.-Y. Org. Lett. 2015; 17: 1660
- 18a Brown RS, Nagorski RW, Bennet AJ, McClung RE. D, Aarts GH. M, Klobukowski M, McDonald R, Santarsiero BD. J. Am. Chem. Soc. 1994; 116: 2448
- 18b Neverov A, Brown RS. J. Org. Chem. 1996; 61: 962
- 18c Brown RS. Acc. Chem. Res. 1997; 30: 131
- 18d Denmark SE, Burk MT, Hoover AJ. J. Am. Chem. Soc. 2010; 132: 1232
- 19 Catalyst Preparation To a stirred solution of 2,5-thiophenedicarbonyl dichloride (1.0 equiv, 1.0 mmol, 209 mg) in CH2Cl2 (20 mL) at 0 °C were added dropwise the alkyl derivative of the cinchona alkaloid (2.1 equiv, 2.1 mmol) and Et3N (4.0 equiv, 4.0 mmol) in CH2Cl2 (15 mL) using a dropping funnel. After the addition was complete, the mixture was stirred for 6 h at 0 °C to room temperature. After completion of the reaction, saturated NaHCO3 solution (20 mL) was added to the mixture. The resulting solution was extracted with CH2Cl2 (3 × 20 mL) and the combined organic layer washed with brine (20 mL), dried over Na2SO4 and concentrated on a rotary evaporator under vacuum. The resulting solid was purified by column chromatography with CH2Cl2/MeOH (10:1). 2-{(1S)-(6-Butoxyquinolin-4-yl)[(2S)-5-ethylquinuclidin-2-yl]methyl} 5-{(1S)-(6-Butoxyquinolin-4-yl)[(2S,4S,5R)-5-ethylquinuclidin-2-yl]methyl} Thiophene-2,5-dicarboxylate (Cat 5) White solid; yield: 576 mg (66%); mp 147–150 °C; [α]D 19.4 +24.9 (c 0.33, CHCl3). IR (plate): 1722, 1715, 1620, 1596, 1530, 1507, 1462, 1448, 1362, 1320, 1241 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.69 (d, J = 4.49 Hz, 2 H), 8.00 (d, J = 9.15 Hz, 2 H), 7.79 (s, 2 H), 7.41–7.35 (m, 6 H), 6.67 (d, J = 1.48 Hz, 2 H), 4.17–4.08 (m, 4 H), 3.43–3.38 (m, 2 H), 3.06 (q, J = 12.64 Hz, 2 H), 2.69–2.64 (m, 2 H), 2.36 (d, J = 12.96 Hz, 2 H), 1.87–1.71 (m, 12 H), 1.66–1.62 (m, 2 H), 1.58–1.49 (m, 6 H), 1.45–1.40 (m, 2 H), 1.37–1.25 (m, 4 H), 0.98 (t, J = 7.35 Hz, 6 H), 0.83 (t, J = 7.25 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 160.3, 157.7, 147.2, 144.6, 142.8, 138.8, 133.7, 131.8, 126.7, 122.4, 118.3, 101.8, 75.7, 68.1, 59.0, 58.5, 42.8, 37.3, 31.2, 28.5, 27.7, 25.3, 23.6, 19.3, 13.8, 12.0. HRMS (ESI): m/z [M + H]+ calcd for C52H64N4O6S: 873.4618; found: 873.4619. Halolactones 2 and 3 To a solution of alkenoic acid (1.0 equiv, 0.1 mmol) and catalyst cat 5 (0.05 equiv, 0.005 mmol, 4.6 mg) in a mixture of CHCl3 (2 mL) and hexane (4 mL) at –78 °C in the dark under N2 was added N-bromosuccinimide (NBS) (1.2 equiv, 0.12 mmol, 21 mg) or N-iodosuccinimide (NIS). The resulting mixture was stirred at –78 °C and the reaction progress monitored by TLC. After completion, the reaction was quenched with saturated Na2SO3 (2 mL) at –78 °C and then warmed to room temperature. The solution was diluted with H2O (3 mL) and extracted with CH2Cl2 (3 × 5 mL). The combined extracts were washed with brine (5 mL), dried over Na2SO4, filtered and concentrated in vacuo. The residue was purified by column chromatography using hexane/EtOAc to yield the corresponding halolactone. (R)-5-(Bromomethyl)-5-phenyldihydrofuran-2(3H)-one (2a) Colorless oil; yield: 24.7 mg (97%); [α]D 20.5 –13.95 (c 0.66, CHCl3); 83% ee. 1H NMR (400 MHz, CDCl3): δ = 7.40–7.32 (m, 5 H), 3.72 (d, J = 11.31 Hz, 1 H), 3.67 (d, J = 11.31 Hz, 1 H), 2.85–2.74 (m, 2 H), 2.58–2.47 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 175.5, 140.7, 128.8, 128.6, 124.9, 86.4, 41.0, 32.3, 29.0. HPLC (Daicel ChiralPak IC-3, i-PrOH/hexane = 25:75, 0.6 mL/min, 214 nm): t 1 = 21.8 (minor), t 2 = 25.0 (major). 3-(Bromomethyl)-4,5-dihydrobenzo[c]oxepin-1(3H)-one (3a) White semi-solid; yield: 20.7 mg (81%); [α]D 26.1 –3.5 (c 0.2, CHCl3); racemic. 1H NMR (400 MHz, CDCl3): δ = 7.70 (dd, J = 7.5, 0.7 Hz, 1 H), 7.47 (td, J = 7.5, 1.1 Hz, 1 H), 7.35 (t, J = 7.5 Hz, 1 H), 7.20 (d, J = 7.5 Hz, 1 H), 4.30–4.17 (m, 1 H), 3.55 (dd, J = 10.8, 6.1 Hz, 1 H), 3.47 (dd, J = 10.8, 5.4 Hz, 1 H), 3.05–2.95 (m, 1 H), 2.83–2.75 (m, 1 H), 2.20–2.10 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 170.4, 137.7, 133.0, 131.2, 130.3, 128.8, 127.6, 77.1, 32.8, 32.6, 29.4. HPLC (Daicel ChiralPak IC-3, i-PrOH/hexane = 25:85, 0.6 mL/min, 214 nm): t 1 = 25.0 (minor), t 2 = 29.1 (major).
Electrophilic halogenation catalyzed by Lewis basic chalcogens:
Catalytic halocyclization reactions by sulfur-based catalysts:
For reviews on enantioselective halofunctionalization, see:
Catalytic asymmetric bromolactonization: