Subscribe to RSS
DOI: 10.1055/s-0037-1610760
Recent Advances in the Selective Oxidative Dearomatization of Phenols to o-Quinones and o-Quinols with Hypervalent Iodine Reagents
The authors are grateful to the National Institutes of Health (NIH; R01 GM123098) for financial support of this work.
Abstract
ortho-Quinones are valuable molecular frameworks with diverse applications across biology, materials, organic synthesis, catalysis, and coordination chemistry. Despite their broad utility, their synthesis remains challenging, in particular via the direct oxidation of readily accessible phenols, due to the need to affect regioselective ortho oxidation coupled with the sensitivity of the resulting o-quinone products. The perspective looks at the emergence of I(V) hypervalent iodine reagents as an effective class of oxidants for regioselective o-quinone synthesis. The application of these reagents in regioselective phenol oxidation to both o-quinones and o-quinols will be discussed, including a recent report from our laboratory on the first method for the oxidation of electron-deficient phenols using a novel nitrogen-ligated I(V) reagent. Also included are select examples of total syntheses utilizing this methodology as well as recent advancements in chiral I(V) reagent design for asymmetric phenol dearomatization.
1 Introduction
2 I(V): Hypervalent Iodine Reagents
3 I(V)-Mediated Dearomatization to o-Quinones
4 Bisnitrogen-Ligated I(V) Reagents: ortho Dearomatization of Electron-Poor Phenols
5 I(V)-Mediated Dearomatization to o-Quinols
6 Conclusion and Outlook
Publication History
Received: 30 November 2020
Accepted after revision: 15 December 2020
Article published online:
14 January 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Land EJ, Ramsden CA, Riley PA. In Melanins and Melanosomes: Biosynthesis, Structure, Physiological and Pathological Functions . Borovansky J, Riley PA. Wiley-VCH; Weinheim: 2011: 63-86
- 1b Bruins JJ, Albada B, van Delft F. Chem. Eur. J. 2018; 24: 4749
- 1c Saruul E, Murata T, Selenge E, Sasaki K, Yoshizaki F, Batkhuu J. Bioorg. Med. Chem. Lett. 2015; 25: 2555
- 1d Bian J, Li X, Wang N, Wu X, You Q, Zhang X. Eur. J. Med. Chem. 2017; 129: 27
- 1e McSkimming A, Cheisson T, Carrol PJ, Schelter EJ. J. Am. Chem. Soc. 2018; 140: 1223
- 2a Sun L, Campbell MG, Dinca M. Angew. Chem. Int. Ed. 2016; 55: 3566
- 2b Chen J.-X, Tao W.-W, Chen W.-C, Xiao Y.-F, Wang K, Cao C, Yu J, Li S, Geng F.-X, Adachi C, Lee C.-S, Zhang X.-H. Angew. Chem. Int. Ed. 2019; 58: 14660
- 2c Liu Q, Wang N, Caro J, Huang A. J. Am. Chem. Soc. 2013; 135: 17679
- 3a Liao C.-C, Peddinti RK. Acc. Chem. Res. 2002; 35: 856
- 3b Magdziak D, Meek SJ, Pettus TR. R. Chem. Rev. 2004; 104: 1383
- 3c Ramsden CA. Adv. Heterocycl. Chem. 2010; 100: 1
- 3d Nair V, Menon RS, Biju AT, Abhilash KG. Chem. Soc. Rev. 2012; 41: 1050
- 3e Radhika S, Saranya S, Harry NA, Anilkuman G. ChemistrySelect 2019; 4: 9124
- 3f Harry NA, Saranya S, Krishnan KK, Anilkumar G. Asian J. Org. Chem. 2017; 6: 945
- 4a Wendlandt AE, Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638
- 4b Largeron M. Org. Biomol. Chem. 2017; 15: 4722
- 4c Zhang R, Luo S. Chin. Chem. Lett. 2018; 29: 1193
- 4d Fukushima T, Drisdell W, Yano J, Surendranath Y. J. Am. Chem. Soc. 2015; 137: 10926
- 5 Kharisov BI, Mendez-Rojas MA, Garnovskii AD, Ivakhnenko EP, Ortiz-Mendez U. J. Coord. Chem. 2002; 55: 745
- 6 Dudfield PJ. In Comp. Org. Syn. Zh. Obshch. Khim. 2006; 76: 1260 ; Chem. Abstr. 2006, 146, 316980
- 7a Deya PM, Dopica M, Raso AG, Morey J, Saa JM. Tetrahedron 1987; 43: 3532
- 7b Crandall JK, Zucco M, Kirsch S, Coopert DM. Tetrahedron Lett. 1991; 32: 5441
- 7c Barton DH. R, Finet J.-P, Thomas M. Tetrahedron 1988; 44: 6397
- 7d Seok WK, Meyer TJ. J. Am. Chem. Soc. 1988; 110: 7358
- 7e Saladino R, Neri V, Mincione E, Marini S, Coletta M, Fiorucci C, Filippone P. J. Chem. Soc., Perkin Trans. 1 2000; 581
- 8a Battani G, Carolis MD, Monzani E, Tuczek F, Casella L. Chem. Commun. 2003; 726
- 8b Kahtri PK, Jain SL. Catal. Lett. 2012; 142: 1020
- 8c Saka ET, Uzun S, Caglar Y. J. Organomet. Chem. 2016; 810: 25
- 9a Solomon EI, Sundaram UM, Machonkin TE. Chem. Rev. 1996; 96: 2563
- 9b Rolff M, Schottenheim J, Decker H, Tuczek F. Chem. Soc. Rev. 2011; 40: 4077
- 9c Serrano-Plana J, Garcia-Bosch I, Company A, Costas M. Acc. Chem. Res. 2015; 48: 2397
- 9d Hamann JN, Herzigkeit B, Jurgeleit R, Tuczek F. Coord. Chem. Rev. 2017; 334: 54
- 10a Esguerra KV. N, Fall Y, Lumb J.-P. Angew. Chem. Int. Ed. 2014; 53: 5877
- 10b Esguerra KV. N, Fall Y, Petitjean L, Lumb J.-P. J. Am. Chem. Soc. 2014; 136: 7662
- 10c Askari MS, Esguerra KV. N, Lumb J.-P, Ottenwaelder X. Inorg. Chem. 2015; 54: 8665
- 10d Askari MS, Rodriguez-Solano LA, Proppe A, McAllister B, Lumb J.-P, Ottenwaelder X. Dalton Trans. 2015; 44: 12094
- 11 Esguerra KV. N, Lumb J.-P. Synlett 2015; 26: 2731
- 12a Yoshimura A, Zhdankin V. Chem. Rev. 2016; 116: 3328
- 12b Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
- 13a Zhdankin V. J. Org. Chem. 2011; 76: 1185
- 13b Satam V, Harad A, Rajule R, Pati H. Tetrahedron 2010; 7659
- 13c Duschek A, Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 1524
- 14 Magdziak D, Rodriguez AA, Van De Water RW, Pettus TR. R. Org. Lett. 2002; 4: 285
- 15 Kuboki A, Yamamoto T, Ohira S. Chem. Lett. 2003; 32: 420
- 16 Huang Y, Zhang J, Pettus TR. R. Org. Lett. 2005; 7: 5841
- 17 Kaur A, Ariafard A. Org. Biomol. Chem. 2020; 18: 1117
- 18 Ozanne A, Pouysegu L, Depernet D, Francois B, Quideau S. Org. Lett. 2003; 5: 2903
- 19 Quideau S, Pouységu L, Deffieux D, Ozanne A, Gagnepain J, Fabre I, Oxoby M. ARKIVOC 2003; (vi): 106
- 20a Koposov AY, Litvinov DN, Zhdankin VV, Ferguson MJ, McDonald R, Tykwinski RR. Eur. J. Org. Chem. 2006; 4791
- 20b Uyanik M, Akakura M, Ishihara K. J. Am. Chem. Soc. 2009; 131: 251
- 21 Uyanik M, Mutsuga T, Ishihara K. Molecules 2012; 17: 8604
- 22 Wu A, Duan Y, Xu D, Penning TM, Harvey RG. Tetrahedron 2010; 66: 2111
- 23 Usui K, Yamamoto K, Shimizu T, Okazumi M, Mei B, Demizu Y, Kurihara M, Suemune H. J. Org. Chem. 2015; 80: 6502
- 24 Mahmud B, Stack DE. Synth. Commun. 2017; 48: 161
- 25 Zhdankin VV, Koposov AY, Yashin NV. Tetrahedron Lett. 2002; 43: 5735
- 26a Weiss R, Seubert J. Angew. Chem., Int. Ed. Engl. 1994; 33: 891
- 26b Crobo R, Dutton J. Coord. Chem. Rev. 2018; 375: 69
- 26c Aertker K, Rama RJ, Opalach J, Muniz K. Adv. Synth. Catal. 2017; 359: 1290
- 27a Kelley BT, Walter JC, Wengryniuk SE. Org. Lett. 2016; 18: 1896
- 27b Walters JC, Tierno AF, Dubin A, Wengryniuk SE. Eur. J. Org. Chem. 2018; 1460
- 27c Mikhael M, Adler SA, Wengryniuk SE. Org. Lett. 2019; 21: 5889
- 28 Xiao X, Greenwood N, Wengryniuk SE. Angew. Chem. Int. Ed. 2019; 58: 16181
- 29 Lebrasser N, Gagnepain J, Ozanne-Beaudenon A, Leger J.-M, Quideau S. J. Org. Chem. 2007; 72: 6280
- 30 Uyanik M, Mutsuga T, Ishihara K. Angew. Chem. Int. Ed. 2017; 56: 3956
- 31 Gagnepain J, Castet F, Quideau S. Angew. Chem. Int. Ed. 2007; 46: 1533
- 32 Pouységu L, Marguerit M, Gagnepain J, Lyvinec G, Eatherton A, Quideau S. Org. Lett. 2008; 10: 5211
- 33 Marsini MA, Gowin KM, Pettus TR. R. Org. Lett. 2006; 8: 3481
- 34 Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
- 36 Quideau S, Lyvinec G, Marguerit M, Bathany K, Ozanne-Beaudenon A, Buffeteau T, Cavagnat D, Chénedé A. Angew. Chem. Int. Ed. 2009; 48: 4605
- 37 Bosset C, Coffinier R, Peixoto PA, El Assal M, Miqueu K, Sotiropoulos J.-M, Pouységu L, Quideau S. Angew. Chem. Int. Ed. 2014; 53, 9860
- 38 Dong S, Zhu J, Porco JA. J. Am. Chem. Soc. 2008; 130: 2738
- 39 Antien K, Pouységu L, Deffieux D, Massip S, Peixoto PA, Quideau S. Chem. Eur. J. 2019; 25, 2852
- 40 Coffinier R, El Assal M, Peixoto PA, Bosset C, Miqueu K, Sotiropoulos J.-M, Pouységu L, Quideau S. Org. Lett. 2016; 18: 1120
For reports with selected examples of electron-deficient phenols, see:
For reviews on I(V) reagents, see: