Synthesis 2021; 53(13): 2229-2239 DOI: 10.1055/s-0037-1610765
Rh(III)-Catalyzed Olefination and Alkylation of Arenes with Maleimides: A Tunable Strategy for C(sp2 )–H Functionalization
Wenjie Zhang
a
Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
,
Xueyan Liu
b
Bengbu Product Quality and Inspection Institute, Bengbu, Anhui 233040, P. R. of China
,
Zhenfeng Tian
a
Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
,
Hongji Li∗
a
Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
› Author Affiliations
Abstract
We herein report a new nitrogen-directed Rh(III)-catalyzed C(sp2 )–H bond functionalization of N -nitrosoanilines and azoxybenzenes with maleimides as a coupling partner, in which the olefination/alkylation process can be finely controlled at room temperature by variation of the reaction conditions. This method shows excellent functional group tolerance, and presents a mild access to the resulting olefination/alkylation products in moderate to good yields.
Key words rhodium catalysis - nitrosoanilines - azoxybenzenes - olefination - alkylation
References
For selected reviews, see:
1a
Wencel-Delord J,
Dröge T,
Liu F,
Glorius F.
Chem. Soc. Rev. 2011; 40: 4740
1b
Ackermann L.
Acc. Chem. Res. 2014; 47: 281
1c
Moselage M,
Li J,
Ackermann L.
ACS Catal. 2016; 6: 498
1d
Li H,
Miao T,
Wang M,
Li P,
Wang L.
Synlett 2016; 27: 1635
1e
Yang Y,
Lan J,
You J.
Chem. Rev. 2017; 117: 8787
1f
Dong Z,
Ren Z,
Thompson SJ,
Xu Y,
Dong G.
Chem. Rev. 2017; 117: 9333
1g
Mishra NK,
Sharma S,
Park J,
Han S,
Kim IS.
ACS Catal. 2017; 7: 2821
1h
Sambiagio C,
Schönbauer D,
Blieck R,
Dao-Huy T,
Pototschnig G,
Schaaf P,
Wiesinger T,
Zia MF,
Wencel-Delord J,
Besset T,
Maes BU. W,
Schnürch M.
Chem. Soc. Rev. 2018; 47: 6603
1i
Ma C,
Fang P,
Mei T.-S.
ACS Catal. 2018; 8: 7179
1j
Liao G,
Zhou T,
Yao Q.-J,
Shi BF.
Chem. Commun. 2019; 55: 8514
1k
Liao G,
Zhang T,
Lin Z.-K,
Shi B.-F.
Angew. Chem. Int. Ed. 2020; 59: 19773
1l
Zhao Q,
Meng G,
Nolan SP,
Szostak M.
Chem. Rev. 2020; 120: 1981
For selected examples, see:
2a
Yamaguchi J,
Yamaguchi AD,
Itami K.
Angew. Chem. Int. Ed. 2012; 51: 8960
2b
Caro-Diaz EJ. E,
Urbano M,
Buzard DJ,
Jones MR.
Bioorg. Med. Chem. Lett. 2016; 26: 5378
2c
Xing Y.-Y,
Liu J.-B,
Sun Q.-M,
Sun C.-Z,
Huang F,
Chen D.-Z.
J. Org. Chem. 2019; 84: 10690
2d
Han F,
Xun S,
Jia L,
Zhang Y,
Zou L,
Hu X.
Org. Lett. 2019; 21: 5907
2e
Guo S,
Sun L,
Liu Y,
Ma N,
Zhang X,
Fan X.
Org. Lett. 2019; 21: 4082
2f
Wang D,
Dong B,
Wang Y,
Qian J,
Zhu J,
Zhao Y,
Shi Z.
Nat. Commun. 2019; 10: 3539
2g
Zhang S.-K,
Struwe J,
Hu L,
Ackermann L.
Angew. Chem. Int. Ed. 2020; 59: 3178
2h
Wang Q,
Zhang W.-W,
Song H,
Wang J,
Zheng C,
Gu Q,
You S.-L.
J. Am. Chem. Soc. 2020; 142: 15678
2i
Chang R,
Chen Y,
Yang W,
Zhang Z,
Guo Z,
Li Y.
J. Org. Chem. 2020; 85: 13191
2j
Ye X,
Wang C,
Zhang S,
Wei J,
Shan C,
Wojtas L,
Xie Y,
Shi X.
ACS Catal. 2020; 10: 11693
2k
Li Y,
Zhang P,
Liu Y.-J,
Yu Z.-X,
Shi B.-F.
ACS Catal. 2020; 10: 8212
3a
Henry MC,
Mostafa MA. B,
Sutherland A.
Synthesis 2017; 49: 4586
3b
Ping Y,
Chen Z,
Ding Q,
Peng Y.
Synthesis 2017; 49: 2015
3c
Weng Z,
Fang X,
He M,
Gu L,
Lin J,
Li Z,
Ma W.
Org. Lett. 2019; 21: 6310
3d
Xu M,
Yuan Y,
Wang Y,
Tao Q,
Wang C,
Li Y.
Org. Lett. 2019; 21: 6264
3e
Tan G,
Wu Y,
Shi Y,
You J.
Angew. Chem. Int. Ed. 2019; 58: 7440
3f
Yan X,
Zhao P,
Liang H,
Xie H,
Jiang J,
Gou S,
Wang J.
Org. Lett. 2020; 22: 3219
3g
Lapuh MI,
Mazeh S,
Besset T.
ACS Catal. 2020; 10: 12898
4a
Konstantinova LS,
Knyazeva EA,
Obruchnikova NV,
Gatilov YV,
Zibarev AV,
Rakitin OA.
Tetrahedron Lett. 2013; 54: 3075
4b
Hubrich J,
Himmler T,
Rodefeld L,
Ackermann L.
ACS Catal. 2015; 5: 4089
4c
Lin C,
Chen Z,
Liu Z,
Zhang Y.
Adv. Synth. Catal. 2018; 360: 519
4d
Xie H,
Shao Y,
Gui J,
Lan J,
Liu Z,
Ke Z,
Deng Y,
Jiang H,
Zeng W.
Org. Lett. 2019; 21: 3427
4e
Rej N,
Chatani N.
Angew. Chem. Int. Ed. 2019; 58: 8304
4f
Kumar GS,
Khot NP,
Manmohan Kapur M.
Adv. Synth. Catal. 2019; 361: 73
4g
Li L,
Zhang F,
Deng G.-J,
Gong H.
Org. Lett. 2018; 20: 7321
4h
Jiang Y,
Li P,
Zhao J,
Liu B,
Li X.
Org. Lett. 2020; 22: 7475
5a
Liu B,
Fan Y,
Gao Y,
Sun C,
Xu C,
Zhu J.
J. Am. Chem. Soc. 2013; 135: 468
5b
Yu J,
Yang X,
Wu C,
Su W.
J. Org. Chem. 2020; 85: 1009
5c
Kannaboina P,
Kumar KA,
Das P.
Org. Lett. 2016; 18: 900
5d
Lu M.-Z,
Chen X.-R,
Xu H,
Dai H.-X,
Yu J.-Q.
Chem. Sci. 2018; 9: 1311
5e
Meng K,
Sun Y,
Zhang J,
Zhang K,
Ji X,
Ding L,
Zhong G.
Org. Lett. 2019; 21: 8219
5f
Song H,
Li Y,
Yao Q.-J,
Jin L,
Liu L,
Liu Y.-H,
Shi B.-F.
Angew. Chem. Int. Ed. 2020; 59: 6576
5g
Yu Z,
Zhang Y,
Tang J,
Zhang L,
Liu Q,
Li Q,
Gao G,
You J.
ACS Catal. 2020; 10: 203
6a
Hyster TK,
Rovis T.
J. Am. Chem. Soc. 2010; 132: 10565
6b
Shibata K,
Natsui S,
Chatani N.
Org. Lett. 2017; 19: 2234
6c
Zhou T,
Wang Y,
Li B,
Wang B.
Org. Lett. 2016; 18: 5066
6d
Zheng J,
Breit B.
Org. Lett. 2018; 20: 1866
6e
Tian M,
Bai D,
Zheng G,
Chang J,
Li X.
J. Am. Chem. Soc. 2019; 141: 9527
6f
Xu F,
Song Y,
Zhu W,
Liu C,
Lu Y.-Z,
Du M.
Chem. Commun. 2020; 56: 11227
6g
Sun X,
Zhao W,
Li B.-J.
Chem. Commun. 2020; 56: 1298
7a
Morita T,
Akita M,
Satoh T,
Kakiuchi F,
Miura M.
Org. Lett. 2016; 18: 4598
7b
Han S,
Park J,
Kim S,
Lee SH,
Sharma S,
Mishra NK,
Jung YH,
Kim IS.
Org. Lett. 2016; 18: 4666
7c
Zhang Z,
Han S,
Tang M,
Ackermann L,
Li J.
Org. Lett. 2017; 19: 3315
7d
Chen X,
Ren J,
Xie H,
Sun W,
Sun M,
Wu B.
Org. Chem. Front. 2018; 5: 184
7e
Zhao J,
Pi C,
You C,
Wang Y,
Cui X,
Wu Y.
Eur. J. Org. Chem. 2018; 6919
7f
Tian T,
Dong A.-S,
Chen D,
Cao X.-T,
Wang G.
Org. Biomol. Chem. 2019; 17: 7664
7g
Manoharan R,
Logeswaran R,
Jeganmohan M.
J. Org. Chem. 2019; 84: 14830
7h
Li B,
Guo C,
Shen N,
Zhang X,
Fan X.
Org. Chem. Front. 2020; 7: 3698
7i
Wan T,
Pi C,
Wu Y,
Cui X.
Org. Lett. 2020; 22: 6484
8
He Q,
Yamaguchi T,
Chatani N.
Org. Lett. 2017; 19: 4544
9a
Mandal R,
Emayavaramban B,
Sundararaju B.
Org. Lett. 2018; 20: 2835
9b
Banjare SK,
Nanda T,
Ravikumar PC.
Org. Lett. 2019; 21: 8138
10
Sherikar MS,
Kapanaiah R,
Lanke V,
Prabhu KR.
Chem. Commun. 2018; 54: 11200
11a
Zhou Y,
Liang H,
Sheng Y,
Wang S,
Gao Y,
Zhan L,
Zheng Z,
Yang M,
Liang G,
Zhou J,
Deng J,
Song Z.
J. Org. Chem. 2020; 85: 9230
11b
Ghosh AK,
Samanta S,
Ghosh P,
Neogi S,
Hajra A.
Org. Biomol. Chem. 2020; 18: 3093
12a
Li H,
Li P,
Wang L.
Org. Lett. 2013; 15: 620
12b
Li H,
Li P,
Zhao Q,
Wang L.
Chem. Commun. 2013; 49: 9170
12c
Deng H,
Li H,
Wang L.
Org. Lett. 2015; 17: 2450
12d
Deng H,
Li H,
Wang L.
Org. Lett. 2016; 18: 3110
12e
Li H,
Deng H.
Synthesis 2017; 49: 2711
12f
Zhang W,
Deng H,
Li H.
Org. Chem. Front. 2017; 4: 2202
12g
Deng H,
Li H,
Zhang W,
Wang L.
Chem. Commun. 2017; 53: 10322
For early works on isomerization involving the nitroso group, see:
13a
Chen Y,
Zhang R,
Peng Q,
Xu L,
Pan X.
Chem. Asian J. 2017; 12: 2804
13b
Tian M,
Yang X,
Zhang B,
Li X.
Org. Chem. Front. 2018; 5: 3406
14 CCDC 2043831 (3a ) and CCDC 2043409 (4b ) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
15
Han S,
Mishra N,
Jo H,
Oh Y,
Jeon M,
Kim S,
Kim W,
Lee J,
Kim H,
Kim I.
Adv. Synth. Catal. 2017; 359: 2396
16
He S,
Tan G,
Lou A,
You J.
Chem. Commun. 2018; 54: 7794
17a
Hartman WW,
Roll LJ.
Org. Synth. 1933; 13: 82
17b
Gebhardt C,
Priewisch B,
Irran E,
Rück-Braun K.
Synthesis 2008; 1889