Synthesis 2022; 54(05): 1339-1346
DOI: 10.1055/s-0037-1610787
paper

Recyclable Pd2dba3/XPhos/PEG-2000 System for Efficient Boryl­ation of Aryl Chlorides: Practical Access to Aryl Boronates

Mingzhong Cai
,
Chengkai Luo
,
Caifeng Xu
,
Bin Huang
We thank the National Natural Science Foundation of China (No. 21462021), the Natural Science Foundation of Jiangxi Province (No. 20161BAB203086) and Key Laboratory of Functional Small Organic Molecules, Ministry of Education (No. KLFS-KF-201704) for financial support.


Abstract

Pd2dba3/XPhos in poly(ethylene glycol) (PEG-2000) is shown to be a highly stable and efficient catalyst for the borylation of aryl chlorides with bis(pinacolato)diboron. The borylation reaction proceeds smoothly at 110 °C, delivering a wide variety of aryl boronates in good to excellent yields with high functional group tolerance. The crude products were easily isolated via simple extraction of the reaction mixture with cyclohexane. Moreover, both expensive Pd2dba3 and XPhos in PEG-2000 system could be readily recycled and reused more than six times without loss of catalytic efficiency.

Supporting Information



Publikationsverlauf

Eingereicht: 12. September 2021

Angenommen nach Revision: 14. Oktober 2021

Artikel online veröffentlicht:
22. November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 1b Miyaura N. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed. Meijere AD. Wiley-VCH; Weinheim: 2004: 125
    • 1c Miyaura N. Top. Curr. Chem. 2002; 219: 11
    • 1d Kotha S, Lahiri K, Kashinath D. Tetrahedron 2002; 58: 9633
  • 2 Boronic Acids-Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed.. Hall DG. Wiley-VCH; Weinheim: 2011
  • 3 Hall DG. In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine. Hall DG. Wiley-VCH; Weinheim: 2005: 1-99
    • 4a Ishiyama T, Murata M, Miyaura N. J. Org. Chem. 1995; 60: 7508
    • 4b Murata M, Watanabe S, Masuda Y. J. Org. Chem. 1997; 62: 6458
    • 4c Ishiyama T, Itoh Y, Kitano T, Miyaura N. Tetrahedron Lett. 1997; 38: 3447
    • 4d Murata M, Oyama T, Watanabe S, Masuda Y. J. Org. Chem. 2000; 65: 164
    • 4e Ishiyama T, Miyaura N. J. Organomet. Chem. 2000; 611: 392
    • 5a Rosen BM, Huang C, Percec V. Org. Lett. 2008; 10: 2597
    • 5b Wilson DA, Wilson CJ, Moldoveanu C, Resmerita A.-M, Corcoran P, Hoang LM, Rosen BM, Percec V. J. Am. Chem. Soc. 2010; 132: 1800
    • 5c Yamamoto T, Morita T, Takagi J, Yamakawa T. Org. Lett. 2011; 13: 5766
    • 5d Huang K, Yu D.-G, Zheng S.-F, Wu Z.-H, Shi Z.-J. Chem. Eur. J. 2011; 17: 786
    • 5e Molander GA, Cavalcanti LN, Garcia-Garcia C. J. Org. Chem. 2013; 78: 6427
    • 6a Zhu W, Ma D. Org. Lett. 2006; 8: 261
    • 6b Kleeberg C, Dang L, Lin Z, Marder TB. Angew. Chem. Int. Ed. 2009; 48: 5350
    • 6c Labre F, Gimbert Y, Bannwarth P, Olivero S, Dunach E, Chavant PY. Org. Lett. 2014; 16: 2366
    • 6d Ando S, Matsunaga H, Ishizuka T. J. Org. Chem. 2015; 80: 9671
    • 7a Nagashima Y, Takita R, Yoshida K, Hirano K, Uchiyama M. J. Am. Chem. Soc. 2013; 135: 18730
    • 7b Bose SK, Marder TB. Org. Lett. 2014; 16: 4562
    • 7c Bose SK, Deiβenberger A, Eichhorn A, Steel PG, Lin ZY, Marder TB. Angew. Chem. Int. Ed. 2015; 54: 11843
  • 8 Verma PK, Mandal S, Geetharani K. ACS Catal. 2018; 8: 4049
    • 9a Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 9b Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
    • 9c Larsen MA, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 4287
    • 9d Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
  • 10 Littke AF, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
    • 11a Ishiyama T, Ishida K, Miyaura N. Tetrahedron 2001; 57: 9813
    • 11b Murata M, Sambommatsu T, Watanabe S, Masuda Y. Synlett 2006; 1867
    • 11c Fürstner A, Seidel G. Org. Lett. 2002; 4: 541
    • 11d Billingsley KL, Barder TE, Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 5359
    • 11e Guerrand HD. S, Marciasini LD, Jousseaume M, Vaultier M, Pucheault M. Chem. Eur. J. 2014; 20: 5573
    • 11f Li P, Fu C, Ma S. Org. Biomol. Chem. 2014; 12: 3604
    • 11g Dzhevakov PB, Topchiy MA, Zharkova DA, Morozov OS, Asachenko AF, Nechaev MS. Adv. Synth. Catal. 2016; 358: 977
    • 11h Yamamoto Y, Matsubara H, Yorimitsu H, Osuka A. ChemCatChem 2016; 8: 2317
    • 12a Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; UK: 1998
    • 12b Herrerias CI, Yao X, Li Z, Li CJ. Chem. Rev. 2007; 107: 2546
    • 12c Li CJ. Acc. Chem. Res. 2010; 43: 581
    • 12d Simon MO, Li CJ. Chem. Soc. Rev. 2012; 41: 1415
    • 12e Clark JH, Farmer TJ, Herrero-Davila L, Sherwood J. Green Chem. 2016; 18: 3914
    • 12f Sheldon RA. Green Chem. 2017; 19: 18
  • 13 Clarke CJ, Tu W.-C, Levers O, Bröhl A, Hallett JP. Chem. Rev. 2018; 118: 747
    • 14a Chen J, Spear SK, Huddleston JG, Rogers RD. Green Chem. 2005; 7: 64
    • 14b Candeias NR, Branco LC, Gois PM. P, Afonso CA. M, Trindade AF. Chem. Rev. 2009; 109: 2703
  • 15 Ohki T, Harada M, Okada T. J. Phys. Chem. B 2007; 111: 7245
    • 16a Chandrasekhar S, Narsihmulu C, Sultana SS, Reddy NR. Org. Lett. 2002; 4: 4399
    • 16b Declerck V, Colacino E, Bantreil X, Martinez J, Lamaty F. Chem. Commun. 2012; 48: 11778
    • 16c Li JH, Liu WJ, Xie YX. J. Org. Chem. 2005; 70: 5409
    • 16d Liu L, Zhang Y, Wang Y. J. Org. Chem. 2005; 70: 6122
    • 16e Wang L, Zhang Y, Liu L, Wang Y. J. Org. Chem. 2006; 71: 1284
    • 16f Ackermann L, Vicente R. Org. Lett. 2009; 11: 4922
    • 16g Zhou Q, Wei S, Han W. J. Org. Chem. 2014; 79: 1454
    • 16h Zhao H, Cheng M, Zhang J, Cai M. Green Chem. 2014; 16: 2515
    • 17a Chandrasekhar S, Prakash SJ, Rao CL. J. Org. Chem. 2006; 71: 2196
    • 17b Chandrasekhar S, Sultana SS, Yaragorla SR, Reddy NR. Synthesis 2006; 839
    • 17c Bantreil X, Sidi-Ykhlef M, Aringhieri L, Colacino E, Martinez J, Lamaty F. J. Catal. 2012; 294: 113
    • 17d Zhao H, Zhang T, Yan T, Cai M. J. Org. Chem. 2015; 80: 8849
    • 17e Yedage SL, Bhanage BM. Green Chem. 2016; 18: 5635
    • 17f Billault I, Pessl F, Petit A, Turgis R, Scherrmann M.-C. New J. Chem. 2015; 39: 1986
    • 17g Patil NM, Bhanage BM. ChemCatChem 2016; 8: 3458
    • 17h Xu C, Huang B, Yan T, Cai M. Green Chem. 2018; 20: 391
    • 18a Broutin P.-E, Cerna I, Campaniello M, Leroux F, Colobert F. Org. Lett. 2004; 6: 4419
    • 18b Baudoin O, Guenard D, Gueritte F. J. Org. Chem. 2000; 65: 9268
    • 18c Giroux A, Han Y, Prasit P. Tetrahedron Lett. 1997; 38: 3841
  • 19 Billingsley KL, Buchwald SL. J. Org. Chem. 2008; 73: 5589
  • 20 Clary JW, Rettenmaier TJ, Snelling R, Bryks W, Banwell J, Wipke WT, Singaram B. J. Org. Chem. 2011; 76: 9602
  • 21 Wakamiya A, Taniguchi T, Yamaguchi S. Angew. Chem. Int. Ed. 2006; 45: 3170
  • 22 Monopoli A, Calo V, Ciminale F, Cotugno P, Angelici C, Cioffi N, Nacci A. J. Org. Chem. 2010; 75: 3908