Subscribe to RSS
DOI: 10.1055/s-0037-16110021
The n-dig-Cyclization (n = 5, 6) of Alkynes Involving Fixation of CO2
We thank the National Natural Science Foundation of China (No. 21572025), ‘Innovation and Entrepreneurship Talents’ Introduction Plan of Jiangsu Province, Natural Science Foundation of Jiangsu Province (BK20171193), the Key University Science Research Project of Jiangsu Province (15 KJA150001), Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110), and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center for financial support. S.S. thanks the National Natural Science Foundation of China (No. 21602019) and Young Natural Science Foundation of Jiangsu Province (BK20150263) for financial support.Publication History
Received: 14 February 2018
Accepted after revision:24 April 2018
Publication Date:
11 June 2018 (online)
Abstract
Being an abundant, easily available, and renewable one-carbon source, carbon dioxide has received much attention in organic synthesis. However, carbon dioxide is a thermodynamically inert molecule that is hard to incorporate into useful chemicals. Nevertheless, various elegant methods have been developed for the incorporation of carbon dioxide in a number of heterocycles. In this review, we summarize and update the recent advances in n-dig-cyclization of alkynes involving the fixation of CO2, including the 5-dig- and 6-dig-cyclization of alkynes.
1 Introduction
2 The 5-dig-Cyclization of Alkynes
3 The 6-dig-Cyclization of Alkynes
4 Conclusion
-
References
- 1a Olah GA. Prakash GK. S. Goeppert A. J. Am. Chem. Soc. 2011; 133: 12881
- 1b Omae I. Catal. Today 2006; 115: 33
- 1c Federsel C. Jackstell R. Beller M. Angew. Chem. Int. Ed. 2010; 49: 6254
- 1d Li Y.-N. Ma R. He L.-N. Diao Z.-F. Catal. Sci. Technol. 2014; 4: 1570
- 1e Omae I. Coord. Chem. Rev. 2012; 256: 1384
- 1f Energy Information Administration, International Energy Outlook (report No. DOE/EIA-0484). U.S. Department of Energy; Washington DC: 2004. available online at www.eia.doe.gov/oiaf/ieo/index.html
- 2a Wang X. Liu Y. Martin R. J. Am. Chem. Soc. 2015; 137: 6476
- 2b Aoki M. Kaneko M. Izumi S. Ukai K. Iwasawa N. Chem. Commun. 2004; 2568
- 2c Chauvier C. Tlili A. Das Neves Gomes C. Thuéry P. Cantat T. Chem. Sci. 2015; 6: 2938
- 2d Wang X. Nakajima M. Martin R. J. Am. Chem. Soc. 2015; 137: 8924
- 2e Moragas T. Gaydou M. Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
- 2f Zall CM. Linehan JC. Appel AM. ACS Catal. 2015; 5: 5301
- 2g Masuda Y. Ishida N. Murakami M. J. Am. Chem. Soc. 2015; 137: 14063
- 2h Rebih F. Andreini M. Moncomble A. Harrson-Marchand A. Maddaluno J. Durandetti M. Chem. Eur. J. 2016; 22: 3758
- 2i Fujihara T. Xu T. Semba K. Terao J. Tsuji Y. Angew. Chem. Int. Ed. 2011; 50: 523
- 2j Shimizu K. Takimoto M. Sato Y. Mori M. Org. Lett. 2005; 7: 195
- 3a Song Y. Chen W. Zhao C. Li S. Wei W. Sun Y. Angew. Chem. Int. Ed. 2017; 56: 10840
- 3b Wang D. Bi Q. Yin G. Zhao W. Huang F. Xie X. Jiang M. Chem. Commun. 2016; 14226
- 3c Hurtado L. Natividad R. García H. Catal. Commun. 2016; 84: 30
- 3d Goeppert A. Czaun M. Jones J.-P. Surya Prakash GK. Olah GA. Chem. Soc. Rev. 2014; 43: 7995
- 3e Gui Y.-Y. Hu N. Chen X.-W. Liao L.-L. Ju T. Ye J.-H. Zhang Z. Li J. Yu D.-G. J. Am. Chem. Soc. 2017; 139: 17011
- 3f Wesselbaum S. vomStein T. Klankermayer J. Leitner W. Angew. Chem. Int. Ed. 2012; 51: 7499
- 3g Tominaga K.-i. Sasaki Y. J. Mol. Catal. A: Chem. 2004; 220: 159
- 3h Wang Li. Yi Y. Guo H. Tu X. ACS Catal. 2018; 8: 90
- 4a Zhou H. Wang G. Zhang W. Lu X. ACS Catal. 2015; 5: 6773
- 4b Honda M. Tamura M. Nakao K. Suzuki K. Nakagawa Y. Tomishige K. ACS Catal. 2014; 4: 1893
- 4c Decortes A. Castilla AM. Kleij AW. Angew. Chem. Int. Ed. 2010; 49: 9822
- 4d Rintjema J. Epping R. Fiorani G. Martín E. Escudero-Adán EC. Kleij AW. Angew. Chem. Int. Ed. 2016; 55: 3972
- 4e Desens W. Werner T. Adv. Synth. Catal. 2016; 358: 622
- 4f Vara BA. Struble TJ. Wang W. Dobish MC. Johnston JN. J. Am. Chem. Soc. 2015; 137: 7302
- 4g Song Q.-W. Chen W.-Q. Ma R. Yu A. Li Q.-Y. Chang Y. He L.-N. ChemSusChem 2015; 8: 821
- 4h Darensbourg DJ. Chem. Rev. 2007; 107: 2388
- 4i Sopeña S. Fiorani G. Martín C. Kleij AW. ChemSusChem 2015; 8: 3248
- 4j Liu X. Zhang S. Song Q.-W. Liu X.-F. Ma R. He L.-N. Green Chem. 2016; 18: 2871
- 5a Yu B. Zhao Y. Zhang H. Xu J. Hao L. Gao X. Liu Z. Chem. Commun. 2014; 2330
- 5b Yu B. Yang Z. Zhao Y. Hao L. Zhang H. Gao X. Han B. Liu Z. Chem. Eur. J. 2016; 22: 1097
- 6 García-Domínguez P. Fehr L. Rusconi G. Nevado C. Chem. Sci. 2016; 7: 3914
- 7 Sun S. Wang B. Gu N. Yu J.-T. Cheng J. Org. Lett. 2017; 19: 1088
- 8a Takeda Y. Okumura S. Tone S. Sasaki I. Minakata S. Org. Lett. 2012; 14: 4874
- 8b Sekine K. Kobayashi R. Yamada T. Chem. Lett. 2015; 44: 1407
- 8c Minakata S. Sasaki I. Ide T. Angew. Chem. Int. Ed. 2010; 49: 1309
- 8d Ouyang L. Tang X.-D. He H.-T. Qi C.-R. Xiong W.-F. Ren Y.-W. Jiang H.-F. Adv. Synth. Catal. 2015; 357: 2556
- 8e Sugiyama N. Ohseki M. Kobayashi R. Sekine K. Saito K. Yamada T. Chem. Lett. 2017; 46: 1323
- 9 Uemura K. Kawaguchi T. Takayama H. Nakamura A. Inoue Y. J. Mol. Catal. A: Chem. 1999; 139: 1
- 10a Kim HS. Kim JW. Shim SC. Kim TJ. J. Organomet. Chem. 1997; 545: 337
- 10b Gu Y. Shi F. Deng Y. J. Org. Chem. 2004; 69: 391
- 10c Jiang H.-F. Wang A.-Z. Liu H.-L. Qi C.-R. Eur. J. Org. Chem. 2008; 2309
- 11a Kikuchi S. Yoshida S. Sugawara Y. Yamada W. Cheng H.-M. Fukui K. Sekine K. Iwakura I. Ikeno T. Yamada T. Bull. Chem. Soc. Jpn. 2011; 84: 698
- 11b Song Q.-W. Yu B. Li X.-D. Ma R. Diao Z.-F. Li R.-G. Li W. He L.-N. Green Chem. 2014; 16: 1633
- 11c Tang X. Qi C. He H. Jiang H. Ren Y. Yuan G. Adv. Synth. Catal. 2013; 355: 2019
- 12a Kayaki Y. Yamamoto M. Suzuki T. Ikariya T. Green Chem. 2006; 8: 1019
- 12b Kayaki Y. Yamamoto M. Ikariya T. J. Org. Chem. 2007; 72: 647
- 12c Bruneau C. Dixneuf PH. J. Mol. Catal. 1992; 74: 97
- 12d Wang M.-Y. Song Q.-W. Ma R. Xie J.-N. He L.-N. Green Chem. 2016; 18: 282
- 12e Kayaki Y. Yamamoto M. Ikariya T. Angew. Chem. Int. Ed. 2009; 48: 4194
- 12f Ca’ ND. Gabriele B. Ruffolo G. Veltri L. Zanetta T. Costa M. Adv. Synth. Catal. 2011; 353: 133
- 12g Wang Y.-B. Wang Y.-M. Zhang W.-Z. Lu X.-B. J. Am. Chem. Soc. 2013; 135: 11996
- 12h Hase S. Kayaki Y. Ikariya T. ACS Catal. 2015; 5: 5135
- 12i Hu J. Ma J. Zhu Q. Qian Q. Han H. Mei Q. Han B. Green Chem. 2016; 18: 382
- 13 Ishida T. Kobayashi R. Yamada T. Org. Lett. 2014; 16: 2430
- 14 Ugajin R. Kikuchi S. Yamada T. Synlett 2014; 25: 1178
- 15a Ishida T. Kikuchi S. Tsubo T. Yamada T. Org. Lett. 2013; 15: 848
- 15b Kikuchi S. Yamada T. Chem. Rec. 2014; 14: 62
- 15c Didehban K. Vessally E. Salary M. Edjlali L. Babazadeh M. J. CO2 Util. 2018; 23: 42
- 16 Ishida T. Kikuchi S. Yamada T. Org. Lett. 2013; 15: 3710
- 17 Guo C.-X. Zhang W.-Z. Liu S. Lu X.-B. Catal. Sci. Technol. 2014; 4: 1570
- 18 Wang B. Sun S. Yu J.-T. Jiang Y. Cheng J. Org. Lett. 2017; 19: 4319
- 19a Liu X. Wang M.-Y. Wang S.-Y. Wang Q. He L.-N. ChemSusChem 2017; 10: 1210
- 19b Yoshida S. Fukui K. Kikuchi S. Yamada T. Chem. Lett. 2009; 38: 786
- 19c Yoshida M. Mizuguchi T. Shishido K. Chem. Eur. J. 2012; 18: 15578
- 19d Fujii A. Choi J.-C. Fujita K. Tetrahedron Lett. 2007; 58: 4483
- 19e Chen G.-F. Fu C.-L. Ma S.-M. Org. Biomol. Chem. 2011; 9: 105
- 20a Das B. Kundu P. Chowdhury C. Org. Biomol. Chem. 2014; 12: 741
- 20b Bacchi A. Chiusoli AP. Costa M. Gabriele B. Righi C. Salerno G. Chem. Commun. 1997; 1209
- 21a Nicholls R. Kaufhold S. Nguyen BN. Catal. Sci. Technol. 2014; 4: 3458
- 21b Dell’Amico DB. Calderazzo F. Labella L. Marchetti F. Pampaloni G. Chem. Rev. 2003; 103: 3857
- 22 Joumier JM. Fournier J. Bruneau C. Dixneuf PH. J. Chem. Soc., Perkin Trans. 1 1991; 3271
- 23a Yoshida S. Fukui K. Kikuchi S. Yamada T. J. Am. Chem. Soc. 2010; 132: 4072
- 23b Song Q.-W. He L.-N. Adv. Synth. Catal. 2016; 358: 1251
- 23c Yamada W. Sugawara Y. Cheng HM. Ikeno T. Yamada T. Eur. J. Org. Chem. 2007; 2604
- 24 Yuan G.-Q. Zhu G.-J. Chang X.-Y. Qi C.-R. Jiang H.-F. Tetrahedron 2010; 66: 9981
- 25 Liu Y. Yao B. Deng C.-L. Tang R.-Y. Zhang X.-G. Li J.-H. Org. Lett. 2011; 13: 2184