Subscribe to RSS
DOI: 10.1055/s-0037-1611053
Directed ortho Metalation (DoM)-Linked Corriu–Kumada, Negishi, and Suzuki–Miyaura Cross-Coupling Protocols: A Comparative Study
We are grateful to NSERC Canada, Discovery Grant (DG 05698) for support of our synthetic programs and CQ thanks NSERC for a graduate fellowship.Publication History
Received: 09 July 2018
Accepted after revision: 21 August 2018
Publication Date:
05 October 2018 (online)
Dedicated to Scott Denmark: By this, we (and KB in absentia) are celebrating your creativity and stellar achievements.
Published as part of the Special Section dedicated to Scott E. Denmark on the occasion of his 65th birthday.
Abstract
A systematic study of the widely used, titled name reaction transition-metal-catalyzed cross-coupling reactions with attention to context with the directed ortho metalation (DoM) is reported. In general, the Suzuki–Miyaura and Negishi protocols show greater scope and better yields than the Corriu–Kumada variant, although the latter qualitatively proceeds at fastest rate but has low functional group tolerance. The Negishi process is shown to be useful for substrates with nucleophile and base-sensitive functionality and it is comparable to the Suzuki–Miyaura reaction in efficiency. The link of these cross-coupling reactions to the DoM strategy lends itself to the regioselective construction of diversely substituted aromatics and heteroaromatics.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611053.
- Supporting Information
-
References
- 1 Current Address: Bristol-Myers Squibb Co., Department of Medicinal Chemistry, Princeton, NJ 08543-4000, USA.
- 2a de Meijere A, Brase S, Oestreich M. Metal-Catalyzed Cross-Coupling Reactions and More . Vols 1-3. Wiley-VCH; Weinheim: 2014
- 2b For a chronologically historical conceptual perspective with original and leading references, see: Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 2c See also: Roy D, Uozumi Y. Adv. Synth. Catal. 2018; 360: 602
- 3 Corriu RJ. P, Masse JP. J. Chem. Soc., Chem. Commun. 1972; 144
- 4 Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
- 5 Negishi E.-i, King AO, Okukado N. J. Org. Chem. 1977; 42: 1821
- 6a Kosugi M, Sasazawa K, Shimizu Y, Migita T. Chem. Lett. 1977; 301
- 6b Milstein D, Stille JK. J. Am. Chem. Soc. 1979; 101: 4992
- 7a Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 3437
- 7b Yanagi T, Miyaura N, Suzuki A. Synth. Commun. 1981; 11: 513
- 9 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 4467
- 10 The Mizoroki–Heck Reaction . Oestreich M. Wiley; Weinheim: 2009
- 11 Haag B, Mosrin M, Ila H, Malakhov V, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9794
- 12 King AO, Yasuda N. Top. Organomet. Chem. 2004; 6: 205
- 13a For an analysis of cross-coupling reactions in the context of a medicinal chemist’s toolbox based on limited set of journals, see: Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
- 13b For the development of nanomole-scale high-throughput cross-coupling chemistry for the synthesis of complex molecules, see: Santanilla AB, Regalado EL, Pereira T, Shevlin M, Bateman K, Campeau L.-C, Schneeweis J, Berritt S, Shi Z.-C, Nantermet P, Liu Y, Helmy R, Welch CJ, Vachal P, Davies IW, Cernak T, Dreher SD. Science 2015; 347: 49
- 13c Recently, Buchwald summarized applications of C–N couplings, see: Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 19: 12564
- 13d An analysis of the Suzuki–Miyaura coupling for the synthesis of pharmaceutically important heterocycles can be seen here: Almond-Thynne J, Blakemore DC, Pryde DC, Spivey AC. Chem. Sci. 2017; 8: 40
- 14a Koch FP, Heeney M. In Materials Science and Technology . Cahn RW, Haasen P, Kramer EJ. Wiley-VCH; New York: 2013
- 14b Xu S, Kim EH, Wei A, Negishi E.-i. Sci. Technol. Adv. Mater. 2014; 15: 1
- 15a Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 15b For general synthetic and mechanism aspects of C–H activation, see: Tan PW, Haughey M, Dixon DJ. Chem. Commun. 2015; 4406 ; and references to general synthetic and mechanism aspects of C–H activation
- 16a Linghu X, Wong N, Jost V, Fantasia S, Sowell CG, Gosselin F. Org. Process Res. Dev. 2017; 21: 1320
- 16b Znidar D, Hone CA, Inglesby P, Boyd A, Kappe CO. Org. Process Res. Dev. 2017; 21: 878
- 16c Greshock TJ, Moore KP, McClain RT, Bellomo A, Chung CK, Dreher SD, Kutchukian PS, Peng Z, Davies IW, Vachal P, Ellwart M, Manolikakes SM, Knochel P, Nantermet PG. Angew. Chem. Int. Ed. 2016; 55: 13714
- 16d Gontcharov A, Dunetz JR. Org. Process Res. Dev. 2014; 18: 1145
- 16e Biajoli AF. P, Schwalm CS, Limberger J, Claudino TS, Monteiro AL. J. Braz. Chem. Soc. 2014; 25: 2186
- 16f See also ref. 13d.
- 17 Snieckus V. Chem. Rev. 1990; 90: 879
- 18 Hartung CG, Snieckus V. In Modern Arene Chemistry . Astruc D. Wiley-VCH; New York: 2002: 330
- 19 Macklin T, Snieckus V. In Handbook of C–H Transformations . Dyker G. Wiley-VCH; New York: 2005: 106
- 20 For a review on the synthesis of pharmaceuticals, see: Board J, Cosman JL, Rantanen T, Singh S, Snieckus V. Platinum Met. Rev. 2013; 57: 234
- 21 For phosphinimide DMG – Suzuki–Miyaura coupling, see: Casimiro M, Guedes GP, Iglesias MJ, López Ortiz F. Tetrahedron: Asymmetry 2015; 26: 53
- 22a Quesnelle CA, Familoni OB, Snieckus V. Synlett 1994; 349
- 22b Sengupta S, Leite M, Raslan DS, Quesnelle C, Snieckus V. J. Org. Chem. 1992; 57: 4066
- 23a Macklin TK, Snieckus V. Org. Lett. 2005; 7: 2519
- 23b See also: Melvin PR, Hazari N, Beromi MM, Shah HP, Williams MJ. Org. Lett. 2016; 18: 5784
- 24a Antoft-Finch A, Blackburn T, Snieckus V. J. Am. Chem. Soc. 2009; 131: 17750
- 24b Quasdorf KW, Antoft-Finch A, Liu P, Silberstein AL, Komaromi A, Blackburn T, Ramgren SD, Houk KN, Snieckus V, Garg NK. J. Am. Chem. Soc. 2011; 133: 6352
- 25a Bumagin NA, Ponomaryov AB, Beletskaya IP. J. Organomet. Chem. 1985; 291: 129
- 25b See also: Anastasia L, Negishi E.-i. In Handbook of Organopalladium Chemistry for Organic Synthesis. Vol. 1, Negishi E.-i. Wiley-VCH; New York: 2002
- 26 Although we have studied Stille and Hiyama–Denmark reactions, we have at this stage insufficient data for making generalized observations
- 27a Negishi–Suzuki–Miyaura reaction: Brandao MA. F, de Oliveira AB, Snieckus V. Tetrahedron Lett. 1993; 2437
- 27b Hiyama–Denmark reaction: Mowery ME, DeShong P. J. Org. Chem. 1999; 64: 1684
- 27c For analogous comparisons of Negishi, Stille, and Sonogashira reactions, see ref. 5.
- 27d Copenhagen, J. unpublished results.
- 28 For a previous study, see: Fu J.-m, Snieckus V. Tetrahedron Lett. 1990; 31, 1665
- 29a Bair JS, Palchaudhuri R, Hergenrother PJ. J. Am. Chem. Soc. 2010; 132: 5469
- 29b Ref. 39a.
- 30 Chemla F, Ferreira F, Perez-Luna A, Micouin L, Jackowski O. In, Metal-Catalyzed Cross-Coupling Reactions and More . Vol 1. de Meijere A, Brase S, Oestreich M. Wiley-VCH; Weinheim: 2014: 365
- 31 Xu S, Kamada H, Kim EH, Oda A, Negishi E.-i. In, Metal-Catalyzed Cross-Coupling Reactions and More . Vol 1. de Meijere A, Brase S, Oestreich M. Wiley-VCH; Weinheim: 2014: 133
- 32 Martin-Matute B, Szabo KJ, Mitchell TN. In, Metal-Catalyzed Cross-Coupling Reactions and More . Vol 1. de Meijere A, Brase S, Oestreich M. Wiley-VCH; Weinheim: 2014: 423
- 33 Lee JC. H, Hall DG. In, Metal-Catalyzed Cross-Coupling Reactions and More . Vol 1. de Meijere A, Brase S, Oestreich M. Wiley-VCH; Weinheim: 2014: 65
- 34 Dieter MP. Environ. Health Perspect. 1994; 102: 93
- 35 Denmark SE, Sweis RF. In Metal-Catalyzed Cross-Coupling Reactions and More . Vol 2. de Meijere A, Brase S, Oestreich M. Wiley-VCH; Weinheim: 2014: 475
- 36a Wickham PP, Hazen KH, Guo H, Jones G, Hardee Reuter K, Scott WJ. J. Org. Chem. 1991; 56: 2045
- 36b Zamiraei Z. Chem. Biol. Interface 2017; 7: 217
- 36c See also: Snieckus V. Beilstein J. Org. Chem. 2011; 7: 1215
- 37 For the significance of the heterogeneous state in Pd-catalyzed cross-coupling, see: Biffis A, Centomo P, Del Zotto A, Zecca M. Chem. Rev. 2018; 118: 2249
- 38a See, for example: Siddiqui MA, Snieckus V. Tetrahedron Lett. 1988; 29: 5463
- 38b Han W, Zhou X, Yang S, Xiang G, Cui B, Chen Y. J. Org. Chem. 2015; 80: 11580
- 38c Li L, Chen J.-J, Kan X.-L, Zhang L, Zhao Y.-L, Liu Q. Eur. J. Org. Chem. 2015; 4892
- 39a Bender AM, Griggs NW, Gao C, Trask TJ, Traynor JR, Mosberg HI. ACS Med. Chem. Lett. 2015; 6: 1199
- 39b Usuki T, Yanuma H, Hayashi T, Yamada H, Suzuki N, Masuyama Y. J. Heterocycl. Chem. 2014; 51: 269
- 40 For a review on heterocyclic boronic acids, see: Tyrrell E, Brookes P. Synthesis 2004; 469
- 41 Tsou TT, Kochi JK. J. Am. Chem. Soc. 1979; 101: 7547
- 42 For mechanistic aspects of the named reactions see: Echavarren AM, Homs A. In Metal-Catalyzed Cross-Coupling Reactions and More . Vol 1. de Meijere A, Brase S, Oestreich M. Wiley-VCH; Weinheim: 2014: 1-64
- 43 See accompanying manuscript: Quesnelle CA, Snieckus V. Synthesis 2018; 50 DOI: in press; 10.1055/s0037-1610273.
- 44 Still WC, Kahn M, Mitra A. J. Org. Chem. 1978; 43: 2923
- 45 Perrin DD, Armarego WL, Perrin DR. Purification of Laboratory Chemicals 2nd ed. . Pergamon Press; Oxford: 1980
- 46 Watson SC, Eastham JF. J. Organomet. Chem. 1967; 9: 165
- 47 Pohmakotr M, Geiss K.-H, Seebach D. Chem. Ber. 1979; 112: 1420
- 48 Coulson DR. Inorg. Synth. 1972; 13: 121
- 49 Barnett KW. J. Chem. Educ. 1974; 51: 422
- 50 Subramanian LR, Hanack M, Chang LW. K, Imhoff MA, Schleyer P. vR, Effenberger F, Kurtz W, Stang PJ, Dueber TE. J. Org. Chem. 1976; 41: 4099
- 51 Porzelle A, Woodrow MD, Tomkinson NC. O. Org. Lett. 2009; 11: 233
- 52 Stang P, Anderson AG. J. Org. Chem. 1976; 41: 781
- 53 Petrakis KS, Nagabhushan TL. J. Am. Chem. Soc. 1987; 109: 2831
- 54 Nutt RF, Chen K.-M, Jouille MM. J. Org. Chem. 1984; 49: 1013
- 55 CAQ thanks VS for the preparation of this compound, arguably in the last time he was in the lab.
See, for example:
For application in the pharmaceutical industry, on small- and large-scale, see for example:
See in particular a review outlining many more:
To our knowledge, such a comparison has not appeared in the literature. For single cases of comparison, see:
Aside from our work (see references 22, 23, 24), methodological DoM-cross-coupling tactic studies are rare in the non-patent literature; see for example:
For recent and alternate syntheses of phenanthridines and phenanthridinones, see:
The NHBoc group is, however, tolerated in Negishi couplings of aryl iodides with serine and aspartic acid derived zinc reagents; see: