Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(20): 2633-2637
DOI: 10.1055/s-0037-1611082
DOI: 10.1055/s-0037-1611082
letter
Regioselective and Catalyst-Free Epoxidation of (E)-3-[3-(2-Hydroxyaryl)-3-oxoprop-1-en-1-yl]chromones
Thanks are due to University of Aveiro and FCT/MEC for financial support of the QOPNA research project (FCT UID/QUI/00062/2013) and the CICECO-Aveiro Institute of Materials (POCI-01-0145-FEDER-007679; FCT UID/CTM/50011/2013); these are financed by national funds and, when appropriate, co-financed by FEDER under the PT2020 Partnership Agreement, and to the Portuguese NMR Network. We would like also to thank FCT/MEC and the General Directorate for Scientific Research and Technological Development – DGRSDT of Algeria and Agence Thématique de Recherche en Sciences et Technologie ATRST for approving the co-financed bilateral project PT-DZ/0005. We further wish to thank CICECO for funding the purchase of the single-crystal X-ray diffractometer.Further Information
Publication History
Received: 08 September 2018
Accepted after revision: 30 September 2018
Publication Date:
31 October 2018 (online)
Abstract
The uncatalyzed reaction of hydrogen peroxide with (E)-3-[3-(2-hydroxyaryl)-3-oxoprop-1-en-1-yl]chromones resulted in a regioselective epoxidation of the chromone intracyclic C(2)=C(3) double bond to afford unique isomeric (E)-7a-[3-(2-hydroxyphenyl)-3-oxoprop-1-en-1-yl]-1aH-oxireno[2,3-b]chromen-7(7aH)-ones in high yields. 2D NMR and single-crystal X-ray diffraction were used to elucidate the structures of the chromanone epoxides. Density functional theoretical studies demonstrated a high electrophilicity of the starting chromones.
Keywords
chromones - epoxidation - regioselectivity - NMR - X-ray diffraction - density functional theorySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611082.
- Supporting Information
- CIF File
-
References and Notes
- 1a Sousa JL. C, Talhi O, Rocha DH. A, Pinto DC. G. A, Paz FA. A, Bachari K, Kirsch G, Silva AM. S. Synlett 2015; 26: 2724
- 1b Talhi O, Brodziak-Jaroz L, Panning J, Orlikova B, Zwergel C, Tzanova T, Philippot S, Pinto DC. G. A, Paz FA. A, Gerhäuser C, Dick TP, Jacob C, Diederich M, Bagrel D, Kirsch G, Silva AM. S. Eur. J. Org. Chem. 2016; 965
- 1c Sousa JL. C, Talhi O, Mendes RF, Paz FA. A, Bachari K, Silva AM. S. Eur. J. Org. Chem. 2016; 3949
- 2a Huang W, Liu M.-Z, Li Y, Tan Y, Yang G.-F. Bioorg. Med. Chem. 2007; 15: 5191
- 2b Wu C, Liu Y, Zeng H, Lui L, Wang D, Chen Y. Org. Biomol. Chem. 2011; 9: 253
- 2c Pintiala C, Lawson AM, Comesse S, Daïch A. Tetrahedron Lett. 2013; 54: 2853
- 3a Lévai A, Simon A, Jenei A, Kálmán G, Jekö J, Tóth G. ARKIVOK 2009; (xii): 161
- 3b Lechani N, Hamdi M, Kheddis-Boutemeur B, Talhi O, Laichi Y, Bachari K, Silva AM. S. Synlett 2018; 29: 1502
- 3c Lakhdari H, Talhi O, Hassaine R, Taibi N, Mendes RF, Paz FA. A, Bennamane N, Nedjar-Kolli B, Bachari K, Silva AM. S. Synlett 2018; 29: 1437
- 4 Ibrahim MA. ARKIVOK 2008; (xvii), 192
- 5a Abdel-Rahman AH, Hammouda MA. A, El-Desoky SI. Heteroat. Chem. 2005; 16: 20
- 5b Sosnovskikh VY, Moshkin VS, Irgashev RA. Tetrahedron Lett. 2006; 47: 8543
- 5c Sosnovskikh VY, Moshkin VS, Kodess MI. Tetrahedron Lett. 2008; 49: 6856
- 5d Hassaine R, Talhi O, Taibi N, Paz FA. A, Bensaid O, Bachari K, Silva AM. S. Synlett 2016; 27: 465
- 6a Weitz E, Scheffer A. Ber. Dtsch. Chem. Ges. 1921; 54: 2327
- 6b Donnelly JA, Keegan JR, Quigley K. Tetrahedron 1980; 36: 1671
- 6c Levai A, Patonay T, Székely A, Vass EB, Adam W, Jekö J. J. Heterocycl. Chem. 2000; 37: 1065
- 7 Bernini R, Mincione E, Coratti A, Fabrizib G, Battistuzzi G. Tetrahedron 2004; 60: 967
- 8a Santos CM. M, Silva AM. S, Cavaleiro JA. S, Patonay T, Lévai A. J. Heterocycl. Chem. 2006; 43: 1319
- 8b Patonay T, Kiss-Szikszai A, Silva VL. M, Silva AM. S, Pinto DC. G. A, Cavaleiro JA. S, Jekö J. Eur. J. Org. Chem. 2008; 1937
- 9a Hehre WJ, Radom L, Schleyer PV. R, Pople JA. Ab Initio Molecular Orbital Theory . Wiley-Interscience; New York: 1986
- 9b Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785
- 9c Becke AD. J. Chem. Phys. 1993; 98: 5648
- 10 Frisch MJ, Trucks GW, Schlegel HB. et al. Gaussian 09 . Gaussian, Inc; Wallingford: 2016
- 11a Parr RG, Pearson RG. J. Am. Chem. Soc. 1983; 105: 7512
- 11b Schwenke DW, Truhlar DG. J. Chem. Phys. 1985; 82: 2418
- 11c Wolinski K, Hilton JF, Pulay P. J. Am. Chem. Soc. 1990; 112: 8251
- 11d Chattaraj PK, Lee H, Parr RG. J. Am. Chem. Soc. 1991; 113: 1855
- 11e Šponer JP, Hobza P. Int. J. Quantum Chem. 1996; 57: 959
- 11f Kohn W, Becke AD, Parr RG. J. Phys. Chem. 1996; 100: 12974
- 11g Chocholoušová J, Špirko V, Hobza P. Phys. Chem. Chem. Phys. 2004; 6: 37
- 12 Regioselective Epoxidation of 3-[(2-Hydroxyaryl)-3-oxoprop-1-enyl]chromones 1a–b: General Procedure 30 vol% aq H2O2 (5 mL) was added to a solution of the appropriate chromenone 1a–e (1 mmol) in THF (20 mL), and the mixture was stirred for 30–60 min at r.t. while the reaction was monitored by TLC. Ice (50 g) was then added to the solution, and the product that precipitated was extracted with CH2Cl2 (2 × 50 mL). The solution was concentrated to 10 mL under vacuum, and hexane (10 mL) was added to crystallize the product.
- 13 7a-[(1E)-3-(2-Hydroxyphenyl)-3-oxoprop-1-en-1-yl]-1a,7a-dihydro-7H-oxireno[b]chromen-7-one (2a) Yellowish crystals; yield: 0.268 g (87%); mp 159–162 °C. 1H NMR (300.13 MHz, CDCl3): δ = 5.55 (s, 1 H, H-1a), 6.94 (ddd, J = 8.6, 7.5, 1.1 Hz, 1 H, H-5′′), 7.03 (dd, J = 8.5, 1.1 Hz, 1 H, H-3′′), 7.13 (dd, J = 8.4, 0.7 Hz, 1 H, H-3), 7.23 (dd, J = 8.4, 0.7 Hz, 1 H, H-5), 7.40 (d, J = 15.1 Hz, 1 H, H-2′), 7.48–7.56 (m, 1 H, H-4′′), 7.59 (d, J = 15.1 Hz, 1 H, H-1′), 7.59–7.67 (m, 1 H, H-4), 7.83 (dd, J = 8.6, 1.6 Hz, 1 H, H-6′′), 7.96–8.01 (m, 1 H, H-6), 12.82 (s, 1 H, 2′′-OH). 13C NMR (75.47 MHz, CDCl3): δ = 33.4 (C-7a), 83.3 (C-1a), 118.0 (C-3), 118.6 (C-3′′), 119.1 (C-5′′), 119.3 (C-6a), 119.7 (C-1′′), 123.8 (C-5), 126.6 (C-2′), 127.6 (C-6), 130.1 (C-6′′), 136.37 and 136.52 (C-4 and C-1′), 137.1 (C-4′′), 154.9 (C-2a), 163.6 (C-2′′), 186.9 (C-7), 192.6 (C-3′). HRMS-ESI+: m/z [M + H]+ calcd for C18H13O5: 309.0763; found: 309.0731.
- 14 Crystal data for compound 2a: C18H12O5, M = 308.29, triclinic, space group P-1, Z = 2, a = 6.5204(5) Å, b = 9.4221(8) Å, c = 11.5726(9) Å, α = 84.252(6)°, β = 77.071(5)°, γ = 85.659(5)°, V = 688.42(10) Å3, μ(Mo-Kα) = 0.110 mm–1, D c = 1.487 g cm–3, yellow block, crystal size 0.15 × 0.10 × 0.09 mm3. Of a total of 18928 reflections collected, 3676 were independent (R int = 0.0431). Final R1 = 0.0470 [I > 2σ(I)] and wR2 = 0.1132 (all data). Data completeness to theta = 25.24°, 99.8%. Crystal data for compound 2e: C19H14O5, M = 322.30, orthorhombic, space group P212121, Z = 4, a = 4.8336(3) Å, b = 11.1047(7) Å, c = 27.0691(16) Å, V = 1452.95(15) Å3, μ(Mo-Kα) = 0.107 mm–1, D c = 1.473 g cm–3, yellow plates, crystal size 0.13 × 0.09 × 0.04 mm3. Of a total of 32369 reflections collected, 3916 were independent (R int = 0.0491). Final R1 = 0.0384 [I > 2σ(I)] and wR2 = 0.0896 (all data). Data completeness to theta = 25.24°, 99.7%.
- 15 CCDC 836401 and 836402 contain the supplementary crystallographic data for compounds 2a and 2e. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.