Subscribe to RSS
DOI: 10.1055/s-0037-1611361
Highly Selective One-Pot Synthesis of Polysubstituted Isoflavanes using Styryl Ethers and Electron-Withdrawing ortho-Quinone Methides Generated In Situ
Publication History
Received: 13 September 2018
Accepted after revision: 25 October 2018
Publication Date:
17 December 2018 (online)

Abstract
A highly selective one-pot synthesis of polysubstituted isoflavanes has been developed. The reaction proceeds through the cycloaddition of methyl styryl ethers, derived from phenylacetaldehyde dimethyl acetals under acidic conditions, with electron-withdrawing ortho-quinone methides generated in situ. When phenylacetaldehyde dimethyl acetals were reacted with salicylaldehydes, the reaction proceeded smoothly to afford the corresponding isoflavanes stereoselectively in high yields and with excellent regioselectivities. The present reaction provides versatile access to functionalized isoflavanes, and constitutes a useful tool for the synthesis of biologically active molecules.
Key words
isoflavan - ortho-quinone methide - [4+2] cycloaddition - stereoselective synthesis - regioselective synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611361.
- Supporting Information
-
References and Notes
- 1a Cinzia L, Campo FM, Lisa PA, Osmany C.-R, Marquez HI, Luca R. J. Agric. Food Chem. 2010; 58: 2209
- 1b Grosvenor PW, Gray DO. J. Nat. Prod. 1998; 61: 99
- 1c Wenjun P, Dongmei W, Dan Z. Sci. Rep. 2015; 5: 13914
- 1d Kırmızıbekmez H, Uysal GB, Masullo M, Demirci F, Bağcı Y, Kan Y, Piacente S. Fitoterapia 2015; 103: 289
- 1e Sun X, He C, Yang X, Guo L, Li X. Biochem. Syst. Ecol. 2015; 61: 516
- 1f Miyasea T, Sano M, Yoshino K, Nonaka K. Phytochemistry 1999; 52: 311
- 1g Shakeel U, Inamullah F, Fatima I, Khan S, Kazmi MH, Malik A, Tareen RB, Abbas T. Chem. Nat. Compd. 2016; 52: 611
- 1h Bonde MR, Millar RL, Incham JL. Phytochemistry 1973; 12: 2957
- 2a Tilley AJ, Zanatta SD, Qin CX, Kim I.-K, Seok Y.-M, Stewart A, Woodmand OL, Williams SJ. Bioorg. Med. Chem. 2012; 20: 2353
- 2b Gharpure SJ, Sathiyanarayanan AM, Jonnalagadda P. Tetrahedron Lett. 2008; 49: 2974
- 2c Feng Z.-G, Bai W.-J, Pettus TR. R. Angew. Chem. Int. Ed. 2015; 54: 1864
- 2d Nakamura K, Ohmori K, Suzuki K. Chem. Commun. 2015; 7012
- 2e Takashima Y, Kaneko Y, Kobayashi Y. Tetrahedron 2010; 66: 197
- 2f Zhang J, Zhang S, Yang H, Zhou D, Yu X, Wang W, Xie H. Tetrahedron Lett. 2018; 59: 2407
- 3a Contil C, Desideria N, Orsil N, Sestiliz I, Stein ML. Eur. J. Med. Chem. 1990; 25: 725
- 3b Burali C, Desideri N, Stein ML, Conti C, Orsi N. Eur. J. Med. Chem. 1987; 22: 119
- 3c Desideri N, Conti C, Sestili I, Tomao P, Stein ML, Orsi N. Antiviral Chem. Chemother. 1992; 3: 195
- 3d Conti C, Genovese D, Santoro R, Stein ML, Orsi N, Fiore L. Antimicrob. Agents Chemother. 1990; 34: 460
- 4a Bai W.-J, David JG, Feng Z.-G, Weaver MG, Wu K.-L, Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
- 4b Pathak TP, Sigman MS. J. Org. Chem. 2011; 76: 9210
- 5 Jaworski AA, Scheidt KA. J. Org. Chem. 2016; 81: 10145
- 6a Tanaka K, Sukekawa M, Shigematsu Y, Hoshino Y, Honda K. Tetrahedron 2017; 73: 6456
- 6b Tanaka K, Hoshino Y, Honda K. Heterocycles 2017; 95: 474
- 6c Tanaka K, Hoshino Y, Honda K. Tetrahedron Lett. 2016; 57: 2448
- 6d Tanaka K, Shigematsu Y, Sukekawa M, Hoshino Y, Honda K. Tetrahedron Lett. 2016; 57: 5914
- 6e Miyazaki H, Honda Y, Honda K, Inoue S. Tetrahedron Lett. 2000; 41: 2643
- 6f Inoue S, Wang P, Nagao M, Hoshino Y, Honda K. Synlett 2005; 469
- 6g Shrestha KS, Honda K, Asami M, Inoue S. Bull. Chem. Soc. Jpn. 1999; 72: 73
- 6h Tanaka K, Sukekawa M, Hoshino Y, Honda K. Chem. Lett. 2018; 47: 440
- 6i Tanaka K, Sukekawa M, Kishimoto M, Hoshino Y, Honda K. Heterocycles
- 6j Tanaka K, Kishimoto M, Hoshino Y, Honda K. Tetrahedron Lett. 2018; 59: 1841
- 7 Miyazaki H, Honda K, Asami M, Inoue S. J. Org. Chem. 1999; 64: 9507
- 8 Synthesis of Isoflavane 6; General Procedure: Salicylaldehyde 1 (0.25 mmol), phenylacetaldehyde dimethyl acetal 8 (0.75 mmol) and trimethyl orthoformate (0.50 mmol) were dissolved in anhydrous toluene (2.5 mL) under nitrogen. Trifluoromethanesulfonic acid (20 mol%) was added into the reaction mixture. After being stirred at 40 °C for 1 h, the reaction was quenched with 5% aq. NaHCO3. The organic layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layer was dried over MgSO4, and filtered. The filtrate was concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (hexane/ethyl acetate, 50:1) to afford isoflavan 6. Characterization data for 2,4-dimethoxy-6-nitro-3-(p-tolyl)phenylchromane (6a): Yield: 0.1368 g (84%); yellow solid; dr 30:1. 1H NMR (500 MHz, CDCl3): δ = 8.29 (dd, J = 2.7, 0.8 Hz, 1 H), 8.16 (dd, J = 8.7, 3.0 Hz, 1 H), 7.10 (d, J = 1.3 Hz, 4 H), 7.00 (d, J = 1.3 Hz, 1 H), 5.50–5.47 (m, 1 H), 4.59 (d, J = 4.7 Hz, 1 H), 3.55 (s, 3 H), 3.48 (t, J = 5.0 Hz, 1 H), 3.38 (s, 3 H), 2.31 (s, 3 H); 13C NMR (126 MHz, CDCl3): δ = 157.5, 141.6, 137.1, 132.6, 129.1, 128.9, 125.4, 124.4, 123.8, 117.3, 103.3, 74.4, 57.1, 56.6, 45.1, 21.0; IR (ATR): 2916, 1516, 1338, 1107, 1061, 1030, 918, 753, 616 cm–1; HRMS (ESI+): m/z [M + H]+ calcd for C18H20NO5: 330.1336; found: 330.1342.
- 9a Full data for the X-ray crystal structure analysis can be found in the Supporting Information.
- 9b Farrugia LJ. J. Appl. Crystallogr. 2012; 45: 849
- 10 See for instance: Blaskol G, Cordell GA. Tetrahedron 1989; 45: 6361
For representative syntheses of isoflavones with electron-donating substituents, see: