Synlett, Inhaltsverzeichnis Synlett 2019; 30(10): 1219-1221DOI: 10.1055/s-0037-1611541 cluster © Georg Thieme Verlag Stuttgart · New York Electrochemical Deoxygenation of N-Heteroaromatic N-Oxides P. Xu , H.-C. Xu * College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen 361005, P. R. of China eMail: haichao.xu@xmu.edu.cn › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Published as part of the Cluster Electrochemical Synthesis and Catalysis Abstract An electrochemical method for the deoxygenation of N-heteroaromatic N-oxide to give the corresponding N-heteroaromatics has been developed. Several classes of N-heterocycles such as pyridine, quinoline, isoquinoline, and phenanthridine are tolerated. The electrochemical reactions proceed efficiently in aqueous solution without the need for transition-metal catalysts and waste-generating reducing reagents. Key words Key wordsreduction - organic electrosynthesis - deoxygenation - electrolysis - heterocycles Volltext Referenzen References and Notes 1a Liu J, Xie Y, Zeng W, Lin D, Deng Y, Lu X. J. Org. Chem. 2015; 80: 4618 1b Xiao B, Liu ZJ, Liu L, Fu Y. J. Am. Chem. Soc. 2013; 135: 616 1c Cho SH, Hwang SJ, Chang S. J. Am. Chem. Soc. 2008; 130: 9254 1d Wu J, Cui X, Chen L, Jiang G, Wu Y. J. Am. Chem. Soc. 2009; 131: 13888 1e Tan Y, Barrios-Landeros F, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 3683 1f Zhang LB, Hao XQ, Zhang SK, Liu K, Ren B, Gong JF, Niu JL, Song MP. J. Org. Chem. 2014; 79: 10399 1g Yan G, Borah AJ, Yang M. Adv. Synth. Catal. 2014; 356: 2375 2a Campeau L.-C, Rousseaux S, Fagnou K. J. Am. Chem. Soc. 2005; 127: 18020 2b Reis PM, Royo B. Tetrahedron Lett. 2009; 50: 949 2c Singh SK, Reddy MS, Mangle M, Ganesh KR. Tetrahedron 2007; 63: 126 2d Wenkert D, Woodward RB. J. Org. Chem. 1983; 48: 283 2e Kim KD, Lee JH. Org. Lett. 2018; 20: 7712 2f Wang Y, Espenson JH. Org. Lett. 2000; 2: 3525 2g Kokatla HP, Thomson PF, Bae S, Doddi VR, Lakshman MK. J. Org. Chem. 2011; 76: 7842 3a Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492 3b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230 3c Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302 3d Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594 3e Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018 3f Tang S, Liu Y, Lei A. Chem. 2018; 4: 27 3g Feng R, Smith JA, Moeller KD. Acc. Chem. Res. 2017; 50: 2346 3h Yang QL, Fang P, Mei TS. Chin. J. Chem. 2018; 36: 338 3i Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485 3j Moeller KD. Chem. Rev. 2018; 118: 4817 4a Zhao H.-B, Xu P, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2018; 57: 15153 4b Hou Z.-W, Yan H, Song J.-S, Xu H.-C. Chin. J. Chem. 2018; 36: 909 4c Yan H, Hou ZW, Xu HC. Angew. Chem. Int. Ed. 2019; 58: 4592 4d Zhao H.-B, Liu Z.-J, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 12732 4e Zhao H.-B, Hou Z.-W, Liu Z.-J, Zhou Z.-F, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 587 5 General Procedure for the Electrochemical Deoxygenation Reactions A 10 mL three-necked round-bottomed flask was charged with the N-heteroaromatic N-oxide (0.30 mmol, 1.0 equiv) and Et4NPF6 (0.06 mmol, 0.2 equiv). The flask was then equipped with a condenser, a reticulated vitreous carbon (100 PPI, ca. 65 cm2 cm−3, 1.2 cm × 1.0 cm × 0.8 cm) anode, and a Pb plate (1.0 cm × 1.0 cm) cathode and flushed with argon. MeCN and H2O (4:1, 10.0 mL) were added. The electrolysis was carried out at 80 °C using a constant current of 10 mA until complete consumption of the substrate (monitored by TLC or 1H NMR). The reaction mixture was concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/hexane to give the desired product. 6 Spectral Data for 2b Colorless oil; yield 70%; 2.4 F mol–1. 1H NMR (400 MHz, CDCl3): δ = 8.04–7.95 (m, 2 H), 7.73 (dt, J = 8.3, 1.6 Hz, 1 H), 7.65 (ddt, J = 8.5, 6.9, 1.6 Hz, 1 H), 7.45 (ddt, J = 8.0, 6.9, 1.2 Hz, 1 H), 7.26–7.21 (m, 1 H), 2.72 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 159.1, 148.0, 136.2, 129.5, 128.7, 127.6, 126.6, 125.7, 122.1, 25.5. 7 Spectral Data for 2c Colorless oil; yield 65%; 2.2 F mol–1. 1H NMR (400 MHz, CDCl3): δ = 8.94–8.83 (m, 1 H), 8.10 (d, J = 8.2 Hz, 2 H), 7.82–7.63 (m, 2 H), 7.56–7.45 (m, 1 H), 7.35 (dq, J = 7.5, 3.8 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 150.5, 148.4, 136.1, 129.6, 129.5, 128.4, 127.9, 126.6, 121.2. 8 Spectral Data for 2e Colorless oil; yield 77%; 4.0 F mol–1. 1H NMR (400 MHz, CDCl3): δ = 8.45–8.37 (m, 2 H), 6.85–6.68 (m, 2 H), 3.82 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 165.7, 151.2, 110.0, 55.2. Zusatzmaterial Zusatzmaterial Supporting Information