Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(11): 1324-1328
DOI: 10.1055/s-0037-1611546
DOI: 10.1055/s-0037-1611546
letter
Ag(I)-Mediated Oxidative Radical Trifluoromethylthiolation of Alkenes
This work was supported by the National Natural Science Foundation of China (Grant No. 21562041 and 21502070) and the Fundamental Research Funds for the Central Universities.Further Information
Publication History
Received: 11 March 2019
Accepted after revision: 29 April 2019
Publication Date:
15 May 2019 (online)
Abstract
A simple, mild, and efficient method for an oxidative radical trifluoromethylthiolation of alkenes through AgSCF3/K2S2O8 system has been developed. This reaction provides a straightforward way to synthesize a variety of useful α-SCF3-substituted ketone compounds from a wide range of alkenes in moderate to good yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611546.
- Supporting Information
-
References and Notes
- 1a Smart BE. J. Fluorine Chem. 2001; 109: 3
- 1b Tlili A, Billard T. Angew. Chem. Int. Ed. 2013; 52: 6818
- 1c Wang H, Vicic DA. Synlett 2013; 24: 1887
- 1d Landelle G, Panossian A, Pazenok S, Vors JP, Leroux FR. Beilstein J. Org. Chem. 2013; 9: 2476
- 1e Xu XH, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
- 1f Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
- 1g Zhang PP, Lu L, Shen QL. Acta Chim. Sin. 2017; 75: 744 , DOI: 10.6023/A17050202
- 2a Leo A, Hansch C, Elkins D. Chem. Rev. 1971; 71: 525
- 2b Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
- 3a Leroux F, Jeschke P, Schlosser M. Chem. Rev. 2005; 105: 827
- 3b Rossi S, Puglisi A, Raimondi L, Benaglia M. ChemCatChem 2018; 10: 2717
- 4a Toulgoat F, Alazet S, Billard T. Eur. J. Org. Chem. 2014; 2415
- 4b Wang J, Sánchez-Roselló M, Aceña JL, Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 4c Tlili A, Toulgoat F, Billard T. Angew. Chem. Int. Ed. 2016; 55: 11726
- 4d Meyer F. Chem. Commun. 2016; 52: 3077
- 4e Anselmi E, Simon C, Marrot J, Bernardelli P, Schio L, Pégot B, Magnier E. Eur. J. Org. Chem. 2017; 6319
- 5a Adams DJ, Clark JH. J. Org. Chem. 2000; 65: 1456
- 5b Teverovskiy G, David S, Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 7312
- 5c Zhang CP, Vicic DA. J. Am. Chem. Soc. 2011; 134: 183
- 5d Lefebvre Q, Fava E, Nikolaienko P, Rueping M. Chem. Commun. 2014; 50: 6617
- 5e Hu M, Rong J, Miao W, Ni C, Han Y, Hu J. Org. Lett. 2014; 16: 2030
- 5f Chu L, Qing FL. Acc. Chem. Res. 2014; 47: 1513
- 6a Pluta R, Nikolaienko P, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 1650
- 6b Shao X, Xu C, Lu L, Shen QL. Acc. Chem. Res. 2015; 48: 1227
- 6c Chachignon H, Maeno M, Kondo H, Shibata N, Cahard D. Org. Lett. 2016; 18: 2467
- 6d Bu MJ, Lu GP, Cai C. Org. Chem. Front. 2017; 4: 266
- 6e Song HX, Han QY, Zhao CL, Zhang CP. Green Chem. 2018; 20: 1662
- 7a Li Y, Koike T, Akita M. Asian J. Org. Chem. 2017; 6: 445
- 7b Dagousset G, Simon C, Anselmi E, Tuccio B, Billard T, Magnier E. Chem. Eur. J. 2017; 23: 4282
- 7c Yin F, Wang XS. Org. Lett. 2014; 16: 1128
- 8a Guo S, Zhang X, Tang P. Angew. Chem. Int. Ed. 2015; 54: 4065
- 8b Wu H, Xiao Z, Wu J, Guo Y, Xiao JC, Liu C, Chen QY. Angew. Chem. Int. Ed. 2015; 54: 4070
- 8c Wu W, Dai W, Ji X, Cao S. Org. Lett. 2016; 18: 2918
- 8d Chen MT, Tang XY, Shi M. Org. Chem. Front. 2017; 4: 86
- 8e Li M, Petersen JL, Hoover JM. Org. Lett. 2017; 19: 638
- 8f Ji MS, Yu JJ, Zhu C. Chem. Commun. 2018; 54: 6812
- 9a Barata-Vallejo S, Bonesi S, Postigo A. Org. Biomol. Chem. 2016; 14: 7150
- 9b Cheng ZF, Tao TT, Feng YS, Tang WK, Xu JJ, Dai J, Xu HJ. J. Org. Chem. 2018; 83: 499
- 10a Rueping M, Tolstoluzhsky N, Nikolaienko P. Chem. Eur. J. 2013; 19: 14043
- 10b Li SG, Zard SZ. Org. Lett. 2013; 15: 5898
- 10c Huang Y, He X, Lin X, Rong M, Weng Z. Org. Lett. 2014; 16: 3284
- 10d Jiang M, Zhu F, Xiang H, Xu X, Deng L, Yang C. Org. Biomol. Chem. 2015; 13: 6935
- 10e Zheng J, Cheng R, Lin JH, Yu DH, Ma L, Jia L, Liang SH. Angew. Chem. Int. Ed. 2017; 56: 3196
- 11a Bayreuther H, Haas A. Chem. Ber. 1973; 106: 1418
- 11b Kolasa A. J. Fluorine Chem. 1987; 36: 29
- 11c Alazet S, Zimmer L, Billard T. Chem. Eur. J. 2014; 20: 8589
- 11d Glenadel Q, Alazet S, Billard T. J. Fluorine Chem. 2015; 179: 89
- 11e Alazet S, Ismalaj E, Glenadel Q, Bars DL, Billard T. Eur. J. Org. Chem. 2015; 4607
- 11f Shao X. Xu C., Lu L., Shen Q. 2015; 80: 3012
- 11g Wu W, Zhang XX, Liang F, Cao S. Org. Biomol. Chem. 2015; 13: 6992
- 12a Pan S, Huang Y, Qing FL. Chem. Asian J. 2016; 11: 2854
- 12b Pan S, Li H, Huang Y, Xu XH, Qing FL. Org. Lett. 2017; 19: 3247
- 13a Shao X, Wang X, Yang T, Lu L, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 3457
- 13b Bootwicha T, Liu X, Pluta R, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2013; 52: 12856
- 13c Wang X, Yang T, Cheng X, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 12860
- 13d Deng QH, Rettenmeier C, Wadepohl H, Gade LH. Chem. Eur. J. 2014; 20: 93
- 13e Vinogradova EV, Müller P, Buchwald SL. Angew. Chem. Int. Ed. 2014; 53: 3125
- 13f Arimori S, Takada M, Shibata N. Org. Lett. 2015; 17: 1063
- 13g Guyon H, Chachignon H, Tognetti V, Joubert L, Cahard D. Eur. J. Org. Chem. 2018; 3756
- 14 Yadav AK, Singh KN. Chem. Commun. 2018; 54: 1976
- 15 Deb A, Manna S, Modak A, Patra T, Maity S, Maiti D. Angew. Chem. Int. Ed. 2013; 52: 9747
- 16a Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546
- 16b Landelle G, Panossian A, Leroux FR. Curr. Top. Med. Chem. 2014; 14: 941
- 16c Rueping M, Liu X, Bootwicha T, Pluta R, Merkens C. Chem. Commun. 2014; 50: 2508
- 17 Yasu Y, Koike T, Akita M. Org. Lett. 2013; 15: 2136
- 18 1-(4-Iodophenyl)-2-[(trifluoromethyl)thio]ethanone (2l) In an oven-dried 25 mL Schlenk tube equipped with a stir bar were added 1-iodo-4-vinylbenzene (1l, 115.0 mg, 0.5 mmol), AgSCF3 (156.7 mg, 0.75 mmol), and K2S2O8 (270.3 mg, 1.0 mmol). The Schlenk tube was evacuated and refilled with oxygen balloon. DMSO (5 mL) was then added by syringe. The reaction mixture was stirred for 3 h at 35 °C. The crude reaction mixture was purified by column chromatography on silica gel to get product 2l. Light yellow solid, 0.118 g, 68%. 1H NMR (400 MHz, CDCl3): δ = 7.93–7.87 (m, 2 H), 7.70–7.64 (m, 2 H), 4.48 (s, 2 H). 13C NMR (101 MHz, CDCl3): δ = 191.4 (s), 138.4 (s), 133.9 (s), 130.5 (q, J = 306.6 Hz), 129.6 (s), 102.5 (s), 38.0 (q, J = 1.9 Hz). 19F NMR (376 MHz, CDCl3): δ = –41.39 (s, 3 F). HRMS (ESI): m/z [M + H]+ calcd for C9H7F3IOS: 346.9214; found: 346.9209.
- 19 1-[(Trifluoromethyl)thio]decan-2-one (3b) In an oven-dried 25 mL Schlenk tube equipped with a stir bar were added alkenes 1-decene 1′b (70.1 mg, 0.5 mmol), AgSCF3 (156.7 mg, 0.75 mmol), and K2S2O8 (270.3 mg, 1.0 mmol). The Schlenk tube was evacuated and refilled with oxygen balloon. DMSO (5 mL) was then added by syringe. The reaction mixture was stirred for 3 h at 35 °C. The crude reaction mixture was purified by column chromatography on silica gel to get product 3b. Light yellow oil, 0.078 g, 61%. 1H NMR (400 MHz, CDCl3): δ = 3.83 (s, 2 H), 2.59 (t, J = 7.4 Hz, 2 H), 1.30 (s, 11 H), 0.90 (t, J = 6.9 Hz, 4 H). 13C NMR (101 MHz, CDCl3): δ = 202.9 (s), 130.5 (q, J = 306.5 Hz), 41.2 (s), 40.0 (q, J = 1.8 Hz), 31.8 (s), 29.2 (s), 29.1 (s), 29.0 (s), 23.7 (s), 22.6 (s), 14.0 (s). 19F NMR (376 MHz, CDCl3): δ = –41.68 (s, 3 F). HRMS (EI): m/z [M]+ calcd for C11H19F3OS: 256.1109; found: 256.1093
- 20 (8R,9S,13S,14S)-13-Methyl-3-{2-[(trifluoromethyl)thio]acetyl}-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (4a)17 In an oven-dried 50 mL Schlenk tube equipped with a stir bar were added 3-vinylestrone (140.1 mg, 0.5 mmol), AgSCF3 (156.7 mg, 0.75 mmol), and K2S2O8 (270.3 mg, 1.0 mmol). The Schlenk tube was evacuated and refilled with oxygen balloon. DMSO (5 mL) was then added by syringe. The reaction mixture was stirred for 3 h at 35 °C. The crude reaction mixture was purified by column chromatography on silica gel to get product 4a. White solid, 0.141 g, 71%. 1H NMR (400 MHz, CDCl3): δ = 7.78–7.66 (m, 2 H), 7.44 (d, J = 8.2 Hz, 1 H), 4.51 (s, 2 H), 3.01 (d, J = 5.1 Hz, 2 H), 2.63–2.45 (m, 2 H), 2.38 (td, J = 10.7, 3.8 Hz, 1 H), 2.26–1.99 (m, 4 H), 1.75–1.45 (m, 6 H), 0.95 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 191.8 (s), 146.9 (s), 137.5 (s), 132.4 (s), 130.7 (q, J = 306.4 Hz), 129.0 (s), 126.0 (s), 125.8 (s), 50.6 (s), 47.9 (s), 44.8 (s), 38.3 (q, J = 1.6 Hz), 37.7 (s), 35.8 (s), 31.5 (s), 29.3 (s), 26.2 (s), 25.5 (s), 21.6 (s), 13.8 (s). 19F NMR (376 MHz, CDCl3): δ = –41.39 (s, 3 F). HRMS (ESI): m/z [M + H]+ calcd for C21H24F3O2S: 397.1449; found: 397.1444
- 21 Radical Trapping Experiment Styrene (1a, 10.5 mg, 0.1 mmol), AgSCF3 (31.3 mg, 0.15 mmol), K2S2O8 (54.1 mg, 0.2 mmol), TEMPO (31.2 mg, 0.2 mmol), and 4,4′-difluorobiphenyl (19.0 mg, 0.1 mmol) were added to a Schlenk tube. The Schlenk tube was evacuated and refilled with oxygen balloon. Then DMSO (1.0 mL) was added by a syringe. The mixture was stirred at 35 °C for 3 h. Trace of the desired product 2a and TEMPO-trifluoromethylthio adduct were detected by 19F NMR spectroscopy with 4,4′-difluorobiphenyl as the internal standard (δ = –115.78 ppm) based on 1a. The same time, the reaction mixture was analyzed by LC–MS