Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
CC BY-ND-NC 4.0 · Synlett 2019; 30(04): 397-400
DOI: 10.1055/s-0037-1611643
DOI: 10.1055/s-0037-1611643
letter
Kinetically Controlled Fischer Glycosidation under Flow Conditions: A New Method for Preparing Furanosides
This work was financially supported in part by JSPS KAKENHI Grant Number 15H05836 in Middle Molecular Strategy, JSPS KAKENHI Grant Number 16H01885, JSPS KAKENHI Grant Number 16H05924, and JSPS KAKENHI Grant Number 18H04620.
Further Information
Publication History
Received: 28 September 2018
Accepted after revision: 03 December 2018
Publication Date:
07 January 2019 (online)
Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue
Abstract
Kinetically controlled Fischer glycosidation was achieved under flow conditions. β-Hydroxy-substituted sulfonic acid functionalized silica (HO-SAS) was used as an acid catalyst. This reaction directly converted aldohexoses into kinetically favored furanosides to enable the practical synthesis of furanosides. After optimization of the reaction temperature and residence time, glucofuranosides, galactofuranosides, and mannofuranosides were synthesized in good yields.
Key words
Fischer glycosidation - flow chemistry - furanosides - supported catalysis - carbohydrate - kinetically controlled reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611643.
- Supporting Information
-
References and Notes
- 1 Peltier P, Euzen R, Daniellou R, Nugier-Chauvin C, Ferrières V. Carbohydr. Res. 2008; 343: 1897
- 2a de Lederkremer RM, Colli W. Glycobiology 1995; 5: 547
- 2b Pedersen LL, Turco SJ. Cell. Mol. Life Sci. 2003; 60: 259
- 2c Lucia M.-P, Adriane RT, Norton H, Orlando AA, Wagner BD, Jose OP. Curr. Org. Chem. 2008; 12: 926
- 2d Richards MR, Lowary TL. ChemBioChem 2009; 10: 1920
- 2e Umesiri FE, Sanki AK, Boucau J, Ronning DR, Sucheck SJ. Med. Res. Rev. 2010; 30: 290
- 3 Imamura A, Lowary T. Trends Glycosci. Glycotechnol. 2011; 23: 134
- 4a Completo GC, Lowary TL. J. Org. Chem. 2008; 73: 4513
- 4b Green JW, Pacsu E. J. Am. Chem. Soc. 1937; 59: 1205
- 4c McAuliffe JC, Hindsgaul O. J. Org. Chem. 1997; 62: 1234
- 4d Timmer MS. M, Stocker BL, Seeberger PH. J. Org. Chem. 2006; 71: 8294
- 5a D'Accorso NB, Thiel IM. E, Schüller M. Carbohydr. Res. 1983; 124: 177
- 5b Gallo-Rodriguez C, Varela O, de Lederkremer RM. Carbohydr. Res. 1997; 305: 163
- 5c Lee RE, Mikusova K, Brennan PJ, Besra GS. J. Am. Chem. Soc. 1995; 117: 11829
- 6 Varela O, Marino C, de Lederkremer RM. Carbohydr. Res. 1986; 155: 247
- 7 Furneaux RH, Rendle PM, Sims IM. J. Chem. Soc., Perkin Trans. 1 2000; 2011
- 8 Shi Z, Sun L, Li C. J. Agric. Food. Chem. 2014; 62: 3287
- 9a Fischer E. Ber. Dtsch. Chem. Ges. 1893; 26: 2400
- 9b Fischer E. Ber. Dtsch. Chem. Ges. 1895; 28: 1145
- 9c Fischer E, Beensch L. Ber. Dtsch. Chem. Ges. 1894; 27: 2478
- 10a Arasappan A, Fraser-Reid B. Tetrahedron Lett. 1995; 36: 7967
- 10b Ferrières V, Bertho J.-N, Plusquellec D. Carbohydr. Res. 1998; 311: 25
- 10c Haworth WN, Porter CR. J. Chem. Soc. (Res.) 1929; 2796
- 10d Velty R, Benvegnu T, Gelin M, Privat E, Plusquellec D. Carbohydr. Res. 1997; 299: 7
- 11 Lubineau A, Fischer J.-C. Synth. Commun. 1991; 21: 815
- 12 Santra S, Jonas E, Bourgault J.-P, El-Baba T, Andreana PR. J. Carbohydr. Chem. 2011; 30: 27
- 13 Ferrières V, Bertho J.-N, Plusquellec D. Tetrahedron Lett. 1995; 36: 2749
- 14a Newman SG, Jensen KF. Green Chem. 2013; 15: 1456
- 14b Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
- 15 Ratner DM, Murphy ER, Jhunjhunwala M, Snyder DA, Jensen KF, Seeberger PH. Chem. Commun. 2005; 578
- 16a Tanaka S.-I, Goi T, Tanaka K, Fukase K. J. Carbohydr. Chem. 2007; 26: 369
- 16b Tanaka K, Fujii Y, Tokimoto H, Mori Y, Tanaka S.-I, Bao G.-M, Siwu ER. O, Nakayabu A, Fukase K. Chem. Asian J. 2009; 4: 574
- 16c Uchinashi Y, Nagasaki M, Zhou J, Tanaka K, Fukase K. Org. Biomol. Chem. 2011; 9: 7243
- 16d Uchinashi Y, Tanaka K, Manabe Y, Fujimoto Y, Fukase K. J. Carbohydr. Chem. 2014; 33: 55
- 17 Tanaka K, Mori Y, Fukase K. J. Carbohydr. Chem. 2009; 28: 1
- 18 Tanaka K, Miyagawa T, Fukase K. Synlett 2009; 1571
- 19a Tanaka K, Motomatsu S, Koyama K, Tanaka S.-I, Fukase K. Org. Lett. 2007; 9: 299
- 19b Furuta A, Hirobe Y, Fukuyama T, Ryu I, Manabe Y, Fukase K. Eur. J. Org. Chem. 2017; 1365
- 20a Gholamzadeh P, Mohammadi Ziarani G, Lashgari N, Badiei A, Asadiatouei P. J. Mol. Catal. A: Chem. 2014; 391: 208
- 20b Mohammadi Ziarani G, Lashgari N, Badiei A. J. Mol. Catal. A: Chem. 2015; 397: 166
- 21a Agirrezabal-Telleria I, Requies J, Güemez MB, Arias PL. Appl. Catal., B 2012; 115: 169
- 21b Crisci AJ, Tucker MH, Dumesic JA, Scott SL. Top. Catal. 2010; 53: 1185
- 21c Crisci AJ, Tucker MH, Lee M.-Y, Jang SG, Dumesic JA, Scott SL. ACS Catal. 2011; 1: 719
- 21d Jeong GH, Kim EG, Kim SB, Park ED, Kim SW. Microporous Mesoporous Mater. 2011; 144: 134
- 21e Liu B, Zhang Z. RSC Adv. 2013; 3: 12313
- 21f Saravanamurugan S, Riisager A. Catal. Commun. 2012; 17: 71
- 21g Shi X, Wu Y, Yi H, Rui G, Li P, Yang M, Wang G. Energies 2011; 4: 669
- 21h Tucker MH, Crisci AJ, Wigington BN, Phadke N, Alamillo R, Zhang J, Scott SL, Dumesic JA. ACS Catal. 2012; 2: 1865
- 21i van der Graaff WN. P, Olvera KG, Pidko EA, Hensen EJ. M. J. Mol. Catal. A: Chem. 2014; 388: 81
- 22 Lourenço JP, Macedo MI, Fernandes A. Catal. Commun. 2012; 19: 105
- 23 Sasidharan M, Bhaumik A. J. Mol. Catal. A: Chem. 2013; 367: 1
- 24 Kureshy RI, Ahmad I, Pathak K, Khan NH, Abdi SH. R, Jasra RV. Catal. Commun. 2009; 10: 572
- 25 Available from MiChS Co. Ltd: http://www.michs.jp; for applications of HO-SAS for flow esterification, see: Furuta A, Fukuyama T, Ryu I. Bull. Chem. Soc. Jpn. 2017; 90: 607
- 26 General Procedure A flow reactor system consisting of syringe pump, column (φ 4.0 mm × 50 mm, filled with HO-SAS (350 mg, 0.9–1.0 mmol/g loading of SO3H), backpressure regulator and tubes (inner diameter φ = 50 μm, length L1 = 40 cm, L2 = 10 cm, L3 = 20 cm) was used. A solution of glucose (1, 90 mg, 0.5 mmol) in methanol (5 mL, 0.10 M glucose solution) was filled in the syringe. The syringe was pumped using the syringe pump at flow rates of 0.1 mL/min (residence time = 5 min), and the reaction solution was passed through the column filled with HO-SAS. After the reaction solution came out, the solution was send to the waste for 3 min (priming time = 3 min). Then, the solution was collected for 10 min. After concentration in vacuo, the crude mixture was analyzed by NMR spectroscopy. New HO-SAS was packed each experiments except for the experiments in Scheme 2.