Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
CC BY-ND-NC 4.0 · Synlett 2019; 30(04): 423-428
DOI: 10.1055/s-0037-1611668
DOI: 10.1055/s-0037-1611668
letter
Bay-Region-Selective Annulative π-Extension (APEX) of Perylene Diimides with Arynes
This work was supported by the ERATO program from JST (JPMJER1302 to K.I.), JSPS KAKENHI Grants 18J01322 to T.N. and JP26810057, JP16H00907, JP17K19155, and JP18H02019 to H.I., the SUMITOMO Foundation (141495 to H.I.), and the DAIKO Foundation (H.I.).Further Information
Publication History
Received: 30 November 2018
Accepted after revision: 10 January 2019
Publication Date:
07 February 2019 (online)
Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue
Abstract
A bay-region-selective annulative π-extension (APEX) reaction of perylene diimides (PDIs) has been achieved by means of in-situ generated reactive aryne intermediates. This method provides an efficient one-pot π-extension at the short axis of PDIs in a sequential manner. Mechanistically, an inverse-electron-demand Diels–Alder reaction might be operative for the transformation.
Key words
annulative π-extension - perylene diimides - arynes - Diels–Alder reaction - coronene diimides - polycyclic aromatic hydrocarbonsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611668.
- Supporting Information
-
References and Notes
- 1 Current address: Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan.
- 2 For a review on perylene diimides, see: Chen L, Li C, Müllen K. J. Mater. Chem. C 2014; 2: 1938
- 3a Soh N, Ueda T. Talanta 2011; 85: 1233
- 3b Ramírez MG, Morales-Vidal M, Navarro-Fuster V, Boj PG, Quintana JA, Villalvilla JM, Retolaza A, Merino S, Díaz-García MA. J. Mater. Chem. C 2013; 1: 1182
- 3c Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem. Rev. 2016; 116: 962
- 3d Kojima M, Tamoto A, Aratani N, Yamada H. Chem. Commun. 2017; 53: 5698
- 3e Nagarajan K, Mallia AR, Muraleedharan K, Hariharan M. Chem. Sci. 2017; 8: 1776
- 4a Battagliarin G, Li C, Enkelmann V, Müllen K. Org. Lett. 2011; 13: 3012
- 4b Sun J, Zhong F, Zhao J. Dalton Trans. 2013; 42: 9595
- 4c Ito S, Hiroto S, Shinokubo H. Chem. Lett. 2014; 43: 1309
- 5a Pschirer NG, Kohl C, Nolde F, Qu J, Müllen K. Angew. Chem. Int. Ed. 2006; 45: 1401
- 5b Zhao X, Xiong Y, Ma J, Yuan Z. J. Phys. Chem. A 2016; 120: 7554
- 6a Avlasevich Y, Müller S, Erk P, Müllen K. Chem. Eur. J. 2007; 13: 6555
- 6b Li Y, Xu L, Liu T, Yu Y, Liu H, Li Y, Zhu D. Org. Lett. 2011; 13: 5692
- 6c Chaolumen Enno H, Murata M, Wakamiya A, Murata Y. Chem. Asian. J. 2014; 9: 3136
- 6d Calbo J, Doncel-Giménez A, Aragó J, Ortí E. Theor. Chem. Acc. 2018; 137: 27
- 7a Ito H, Ozaki K, Itami K. Angew. Chem. Int. Ed. 2017; 56: 11144
- 7b Ito H, Segawa Y, Murakami K, Itami K. J. Am. Chem. Soc. 2019; 141: 3
- 8a Ozaki K, Kawasumi K, Shibata M, Ito H, Itami K. Nat. Commun. 2015; 6: 6251
- 8b Yano Y, Ito H, Segawa Y, Itami K. Synlett 2016; 27: 2081
- 8c Kato K, Segawa Y, Itami K. Can. J. Chem. 2017; 95: 329
- 8d Ozaki K, Zhang H, Ito H, Lei A, Itami K. Chem. Sci. 2013; 4: 3416
- 8e Ozaki K, Murai K, Matsuoka W, Kawasumi K, Ito H, Itami K. Angew. Chem. Int. Ed. 2017; 56: 1361
- 8f Matsuoka W, Ito H, Itami K. Angew. Chem. Int. Ed. 2017; 56: 12224
- 8g Segawa Y, Ito H, Itami K. Nat. Rev. Mater. 2016; 1: 15002
- 9a Paria S, Reiser O. Adv. Synth. Catal. 2014; 356: 557
- 9b Ozaki K, Matsuoka W, Ito H, Itami K. Org. Lett. 2017; 19: 1930
- 9c Kitano H, Matsuoka W, Ito H, Itami K. Chem. Sci. 2018; 9: 7556
- 10a Clar E. Ber. Dtsch. Chem. Ges. 1932; 65: 846
- 10b Clar E, Zander M. J. Chem. Soc. 1957; 4616
- 10c Fort EH, Donovan PM, Scott LT. J. Am. Chem. Soc. 2009; 131: 16006
- 10d Fort EH, Scott LT. J. Mater. Chem. 2011; 21: 1373
- 10e Fort EH, Jeffreys MS, Scott LT. Chem. Commun. 2012; 48: 8102
- 10f Fort EH, Scott LT. Angew. Chem. Int. Ed. 2010; 49: 6626
- 10g Li J, Jiao C, Huang K.-W, Wu J. Chem. Eur. J. 2011; 17: 14672
- 10h Stork G, Leonia NJ, Matsuda K. US 3364274, 1968
- 10i Stork G, Leonia NJ, Matsuda K. US 3364275, 1968
- 10j Fort EH, Scott LT. Tetrahedron Lett. 2011; 52: 2051
- 10k Konishi A, Hirao Y, Matsumoto K, Kurata H, Kubo T. Chem. Lett. 2013; 42: 592
- 10l Schuler B, Collazos S, Gross L, Meyer G, Pérez D, Guitián E, Peña D. Angew. Chem. Int. Ed. 2014; 53: 9004
- 10m Xu F, Xiao X, Hoye TR. Org. Lett. 2016; 18: 5636
- 11a Takikawa H, Nishii A, Sakai T, Suzuki K. Chem. Soc. Rev. 2018; 47: 8030
- 11b Roy T, Biju TT. Chem. Commun. 2018; 54: 2580
- 11c Shi J, Li Y, Li Y. Chem. Soc. Rev. 2017; 46: 1707
- 11d Bhojgude SS, Bhunia A, Biju AT. Acc. Chem. Res. 2016; 49: 1658
- 11e Pérez D, Peña D, Guitián E. Eur. J. Org. Chem. 2013; 5981
- 12 Cioslowski J, Piskorz P, Moncrieff D. J. Am. Chem. Soc. 1998; 120: 1695 ; and references cited therein
- 13a Saito N, Nakamura K, Shibano S, Ide S, Minami M, Sato Y. Org. Lett. 2013; 15: 386
- 13b For a review on heterocyclic arynes, see: Goetz AE, Shah TK, Garg NK. Chem. Commun. 2015; 51: 34
- 14a Sanyal S, Manna AK, Pati SK. J. Phys. Chem. C 2013; 117: 825
- 14b Zhang C, Shi K, Jiajun X, Lei T, Yan Q, Wang J.-Y, Pei J, Zhao D. Chem. Commun. 2015; 51: 7144
- 14c Yang M, Zhou H, Li Y, Zhang Q, Li J, Zhang C, Zhou C, Yu C. J. Mater. Chem. B 2017; 5: 6572
- 14d Paul SC, Cammarata V. J. Electrochem. Soc. 2018; 165: G116
- 15 For a review on recent inverse-electron-demand Diels–Alder reactions, see: Jiang X, Wang R. Chem. Rev. 2013; 113: 5515
- 16 We also calculated each stationary point and transition state by other basis sets (See SI for details).
- 17 3a; Typical Procedure A screw-capped glass tube containing a magnetic stirrer bar was charged sequentially with the dimesityl PDI 1a (100 μmol, 1.0 equiv, 62.4 mg), KF (0.51 mmol, 5.0 equiv, 29.5 mg), PhCN (2.0 mL), and 2-(trimethylsilyl)phenyl triflate (2a, 0.20 mmol, 2.0 equiv, 60.0 mg) under a stream of N2. The mixture was stirred at 160 °C for 48 h, cooled to r.t., and passed through a short pad of silica gel (eluent: CHCl3). The organic solvent was removed under reduced pressure to give a crude mixture that was analyzed by 1H NMR (CDCl3) with CH2Br2 as an internal standard. The residue was the purified by flash column chromatography (silica gel) to afford a mixture of 3aa and 4aa, which was further purified by gel-permeation chromatography to give 3aa as a red solid; yield: 26.4 mg (37.7 μmol, 37% isolated). 1H NMR (400 MHz, CDCl3): δ = 10.2 (s, 2 H), 9.32–9.27 (m, 2 H), 9.24 (d, J = 8.4 Hz, 2 H), 9.10 (d, J = 8.4 Hz, 2 H), 8.19–8.13 (m, 2 H), 7.13 (s, 4 H), 2.42 (s, 6 H), 2.25 (s, 12 H). 13C NMR (150 MHz, CDCl3): δ = 163.5, 163.3, 138.8, 135.2, 134.2, 131.1, 130.0, 129.51, 129.47, 129.3, 129.2, 129.0, 128.6, 127.9, 125.1, 124.2, 123.3, 122.9, 122.5, 21.3, 17.9. HRMS (MALDI-TOF): m/z [M + H]+ calcd for C48H33N2O4: 701.2435; found: 701.2434.
For reviews on APEX reaction of aromatics, see:
For our contributions towards APEX reactions of nonfunctionalized PAHs, see:
For a definition of the APEX reaction, see:
For selected APEX reactions of nonfunctionalized heteroaromatics, see:
For selected bay-region selective APEX reactions, see:
For the utilization of arynes, see:
For reviews on benzyne chemistry, see: