Subscribe to RSS
DOI: 10.1055/s-0037-1611709
Asymmetric Kulinkovich Hydroxycyclopropanation of Alkenes Mediated by Titanium(IV) TADDOLate Complexes
Funding from the European Union’s Seventh Framework Program for research, technological development and demonstration Grant No. 621364 (TUTIC-Green) and from Tallinn University of Technology (Grant No B58) is gratefully acknowledged. M.I. and M.B. are grateful to Dora Plus program for financial support of a short research stay at Tallinn University of Technology. J.A. acknowledges support by the Estonian Ministry of Education and Research through grant IUT23-7 and the EU European Regional Development Fund through grant TK134. Support from COST Action CA15106 ‘C–H Activation in Organic Synthesis’ (CHAOS) is gratefully acknowledged.Publication History
Received: 15 November 2018
Accepted after revision: 18 December 2018
Publication Date:
05 February 2019 (online)
Dedicated to Prof. Oleg Kulinkovich on the occasion of his 70th birthday
Abstract
Asymmetric Kulinkovich cyclopropanation of carboxylic esters with prochiral alkenes is reported. The process is mediated by titanium(IV) (4R,5R)-TADDOLate complexes and affords correspondingly (Z)- or (E)-cyclopropanols with up to 84–87% ee in the event of intra- or intermolecular olefin ligand exchange in intermediate titanacyclopropane [titanium(II)-alkene] species. Configuration of the olefin double bond is preserved in the cyclopropane products, pointing out on total retention of configuration at Ti–C bond in the cyclopropane forming step. The results have been interpreted in the framework of ate complex mechanism, suggesting formation of pentacoordinated titanium ate species as a prerequisite of high enantiocontrol.
Key words
titanium - Kulinkovich reaction - cyclopropanation - esters - cyclopropanols - asymmetric synthesis - reaction mechanismsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611709.
- Supporting Information
-
References
- 1a Ebner C, Carreira EM. Chem. Rev. 2017; 117: 11651
- 1b Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
- 1c Nikolaev A, Orellana A. Synthesis 2016; 48: 1741
- 1d Nithiy M, Rosa D, Orellana A. Synthesis 2013; 45: 3199
- 1e Haym I, Brimble MA. Org. Biomol. Chem. 2012; 10: 7649
- 1f Kulinkovich OG. Chem. Rev. 2003; 103: 2597
- 1g Kulinkovich O. Eur. J. Org. Chem. 2004; 4517
- 2a Ma K, Yin X, Dai M. Angew. Chem. Int. Ed. 2018; 57: 15209
- 2b Yang J, Shen Y, Lim YJ, Yoshikai N. Chem. Sci. 2018; 9: 6928
- 2c Liu H, Fu Z, Gao S, Huang Y, Lin A, Yao H. Adv. Synth. Catal. 2018; 360: 3171
- 2d Ye Z, Cai X, Li J, Dai M. ACS Catal. 2018; 8: 5907
- 2e Che C, Qian Z, Wu M, Zhao Y, Zhu G. J. Org. Chem. 2018; 83: 5665
- 2f Xu B, Wang D, Hu Y, Shen Q. Org. Chem. Front. 2018; 5: 1462
- 2g Novikau I, Hurski A. Tetrahedron 2018; 74: 1078
- 2h Wu P, Jia M, Lin W, Ma S. Org. Lett. 2018; 20: 554
- 2i Nikolaev A, Legault CY, Zhang M, Orellana A. Org. Lett. 2018; 20: 796
- 2j Woźniak Ł, Magagnano G, Melchiorre P. Angew. Chem. Int. Ed. 2018; 57: 1068
- 2k Konik YA, Elek GA, Kaabel S, Järving I, Lopp M, Kananovich DG. Org. Biomol. Chem. 2017; 15: 8334
- 2l Deng Y, Kauser NI, Islam SM, Mohr JT. Eur. J. Org. Chem. 2017; 5872
- 2m Elek GZ, Borovkov V, Lopp M, Kananovich DG. Org. Lett. 2017; 19: 3544
- 3a Barysevich MV, Kazlova VV, Kukel AG, Liubina AI, Hurski AL, Zhabinskii VN, Khripach VA. Chem. Commun. 2018; 54: 2800
- 3b Singh S, Simaan M, Marek I. Chem. Eur. J. 2018; 24: 8553
- 3c Tumma N, Gyanchander E, Cha JK. J. Org. Chem. 2017; 82: 4379
- 3d Davis DC, Walker KL, Hu C, Zare RN, Waymouth RM, Dai M. J. Am. Chem. Soc. 2016; 138: 10693
- 3e Gyanchander E, Ydhyam S, Tumma N, Belmore K, Cha JK. Org. Lett. 2016; 18: 6098
- 3f Ydhyam S, Cha JK. Org. Lett. 2015; 17: 5820
- 3g Murali RV. N. S, Rao NN, Cha JK. Org. Lett. 2015; 17: 3854
- 3h Parida BB, Das PP, Niocel M, Cha JK. Org. Lett. 2013; 15: 1780
- 3i Cheng K, Walsh PJ. Org. Lett. 2013; 15: 2298
- 3j Rosa D, Orellana A. Chem. Commun. 2013; 49: 5420
- 4a Mills LR, Rousseaux SA. L. Synlett 2018; 29: 683
- 4b Mills LR, Arbelaez LM. B, Rousseaux SA. L. J. Am. Chem. Soc. 2017; 139: 11357
- 4c Racouchot S, Ollivier J, Salaün J. Synlett 2000; 1729
- 4d Kozyrkov YY, Pukin A, Kulinkovich OG, Ollivier J, Salaün J. Tetrahedron Lett. 2000; 41: 6399
- 4e Raiman MV, Il’ina NA, Kulinkovich OG. Synlett 1999; 1053
- 5 Wang H.-B, Wang X.-Y, Liu L.-P, Qin G.-W, Kang T.-G. Chem. Rev. 2015; 115: 2975
- 6 Ueoka R, Bortfeld-Miller M, Morinaka BI, Vorholt JA, Piel J. Angew. Chem. Int. Ed. 2018; 57: 977
- 7a Scott JD, DeMong DE, Greshock TJ, Basu K, Dai X, Harris J, Hruza A, Li SW, Lin S.-I, Liu H, Macala MK, Hu Z, Mei H, Zhang H, Walsh P, Poirier M, Shi Z.-C, Xiao L, Agnihotri G, Baptista MA. S, Columbus J, Fell MJ, Hyde LA, Kuvelkar R, Lin Y, Mirescu C, Morrow JA, Yin Z, Zhang X, Zhou X, Chang RK, Embrey MW, Sanders JM, Tiscia HE, Drolet RE, Kern JT, Sur SM, Renger JJ, Bilodeau MT, Kennedy ME, Parker EM, Stamford AW, Nargund R, McCauley JA, Miller MW. J. Med. Chem. 2017; 60: 2983
- 7b Delsarte C, Etuin G, Petit L. Bioorg. Med. Chem. 2018; 26: 984
- 7c Istrate A, Katolik A, Istrate A, Leumann CJ. Chem. Eur. J. 2017; 23: 10310
- 7d Choi J.-R, Cho D.-G, Roh KY, Hwang J.-T, Ahn S, Jang HS, Cho W.-Y, Kim KW, Cho Y.-G, Kim J, Kim Y.-Z. J. Med. Chem. 2004; 47: 2864
- 7e Choi J.-R, Hwang J.-T, Cho D.-G, Roh K.-Y, Kim C.-H, Kim C.-M, Han M.-J, Kim J.-M, Cho W.-Y, Kim G.-W, Ahn S.-B. US Patent US 2006/0111324 A1, 2006
- 8a Xu F, Zhong Y.-L, Li H, Qi J, Desmond R, Song ZJ, Park J, Wang T, Truppo M, Humphrey GR, Ruck RT. Org. Lett. 2017; 19: 5880
- 8b Harper S, McCauley JA, Rudd MT, Ferrara M, DiFilippo M, Crescenzi B, Koch U, Petrocchi A, Holloway MK, Butcher JW, Romano JJ, Bush KJ, Gilbert KF, McIntyre CJ, Nguyen KT, Nizi E, Carroll SS, Ludmerer SW, Burlein C, DiMuzio JM, Graham DJ, McHale CM, Stahlhut MW, Olsen DB, Monteagudo E, Cianetti S, Giuliano C, Pucci V, Trainor N, Fandozzi CM, Rowley M, Coleman PJ, Vacca JP, Summa V, Liverton NJ. ACS Med. Chem. Lett. 2012; 3: 332
- 9a Liskey CW, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 3375
- 9b Bassan EM, Baxter CA, Beutner GL, Emerson KM, Fleitz FJ, Johnson S, Keen S, Kim MM, Kuethe JT, Leonard WR, Mullens PR, Muzzio DJ, Roberge C, Yasuda N. Org. Process Res. Dev. 2012; 16: 87
- 9c Luithle JE. A, Pietruszka J. Eur. J. Org. Chem. 2000; 2557
- 9d Luithle JE. A, Pietruszka J. J. Org. Chem. 2000; 65: 9194
- 9e Imai T, Mineta H, Nishida S. J. Org. Chem. 1990; 55: 4986
- 9f Cheng K, Carrol PJ, Walsh PJ. Org. Lett. 2011; 13: 2346
- 9g Díez D, García P, Marcos IS, Garrido NM, Basabe P, Urones JG. Synthesis 2003; 53
- 9h Díez D, García P, Marcos IS, Garrido NM, Basabe P, Broughton HB, Urones JG. Org. Lett. 2003; 5: 3687
- 9i Pietruszka J, Rieche AC. M, Wilhelm T, Witt A. Adv. Synth. Catal. 2003; 345: 1273
- 9j Pietruszka J, Wilhelm T, Witt A. Synlett 1999; 1981
- 10a Dian L, Marek I. Chem. Rev. 2018; 118: 8415
- 10b Simaan M, Marek I. Angew. Chem. Int. Ed. 2018; 57: 1543
- 10c Benoit G, Charette AB. J. Am. Chem. Soc. 2017; 139: 1364
- 10d Simaan M, Delaye P, Shi M, Marek I. Angew. Chem. Int. Ed. 2015; 54: 12345
- 11a Cha JK, Kulinkovich OG. Org. React. 2012; 77: 1
- 11b Wolan A, Six Y. Tetrahedron 2010; 66: 3097
- 11c Wolan A, Six Y. Tetrahedron 2010; 66: 15
- 11d Kulinkovich O, Isakov V, Kananovich D. Chem. Rec. 2008; 8: 269
- 11e Kulinkovich OG, de Meijere A. Chem. Rev. 2000; 100: 2789
- 12a Chaplinski V, de Meijere A. Angew. Chem. Int. Ed. 1996; 35: 413
- 12b Bertus P, Szymoniak J. Chem. Commun. 2001; 18: 1792
- 13a Kulinkovich OG, Savchenko AI, Sviridov SV, Vasilevski DA. Mendeleev Commun. 1993; 230
- 13b Lee J, Kim H, Cha JK. J. Am. Chem. Soc. 1996; 118: 4198
- 14a Quan LG, Kim S.-H, Lee JC, Cha JK. Angew. Chem. Int. Ed. 2002; 41: 2160
- 14b Astashko D, Cha JK, Rao NN, Parida BB. Eur. J. Org. Chem. 2014; 181
- 14c Lee HG, Lysenko IL, Cha JK. ARKIVOC 2008; (ix): 133
- 15 Corey EJ, Rao SA, Noe MC. J. Am. Chem. Soc. 1994; 116: 9345
- 16a Racouchot S, Sylvestre I, Ollivier J, Kozyrkov YY, Pukin A, Kulinkovich OG, Salaün J. Eur. J. Org. Chem. 2002; 2160
- 16b Konik YA, Kananovich DG, Kulinkovich OG. Tetrahedron 2013; 69: 6673
- 17a de Meijere A, Chaplinski V, Winsel H, Kordes M, Strecker B, Gazizova V, Savchenko AI, Boese R, Schill F (née Brackmann). Chem. Eur. J. 2010; 16: 13862
- 17b Caillé J, Setzer P, Boeda F, Pearson-Long MS. M, Bertus P. SynOpen 2018; 2: 41
- 18 Kulinkovich OG. Pure Appl. Chem. 2000; 72: 1715
- 19 Kulinkovich OG, Kananovich DG. Eur. J. Org. Chem. 2007; 2121
- 20 Kananovich DG, Kulinkovich OG. Tetrahedron 2008; 64: 1536
- 21 Kulinkovich OG, Kananovich DG, Lopp M, Snieckus V. Adv. Synth. Catal. 2014; 356: 3615
- 22a Kasatkin A, Sato F. Tetrahedron Lett. 1995; 36: 6079
- 22b Lee J, Kang CH, Kim H, Cha JK. J. Am. Chem. Soc. 1996; 118: 291
- 22c Savchenko AI, Kulinkovich OG. Zh. Org. Khim. 1997; 33: 913 ; Russ. J. Org. Chem. (Engl. Transl.) 1997, 33, 846
- 22d Epstein OL, Kulinkovich OG. Tetrahedron Lett. 2001; 42: 3757
- 23 Dialkyltitanium ate species with β-hydrogens in alkyl groups (e.g., A shown in Scheme 3) are too unstable at ambient temperatures and not suitable for NMR studies. Instead, stable dimethyltitanium analogues can be generated and used as model compounds for testing reliability of mechanistic assumptions (see SI, Section II).
- 24 Seebach D, Dahinden R, Marti RE, Beck AK, Plattner DA, Kühnle FN. M. J. Org. Chem. 1995; 60: 1788
- 25 Casey CP, Strotman NA. J. Am. Chem. Soc. 2004; 126: 1699
- 26 Astashko D, Lee HG, Bobrov DN, Cha JK. J. Org. Chem. 2009; 74: 5528
- 27 Optimization of the reaction conditions to improve yields of the target cyclopropane compounds 1j–n was not performed
- 28 Ojika M, Qi J, Kito Y, Sakagami Y. Tetrahedron: Asymmetry 2007; 18: 1763
- 29 Gilman H, Cartledge FK. J. Organomet. Chem. 1964; 2: 447
- 30 Krasovskiy A, Knochel P. Synthesis 2006; 890
Reviews:
Recent examples:
Synthesis by oxidation of cyclopropyl boronates:
Synthesis from α-chloroaldehydes:
Synthesis by 1,3-cyclization:
Enzymatic resolution:
Recent review:
Notable recent examples:
Reviews:
For the enantioselective cyclopropanation of amides and nitriles, see: