Subscribe to RSS
DOI: 10.1055/s-0037-1611781
Synthesis of Perfluoroalkyl-Substituted Oxindoles through Organophotoredox-Catalyzed Perfluoroalkylation of N-arylacrylamides with Perfluoroalkyl Iodides
Funding Information: Joint Funds of the Department of Science of Guizhou Province for the Guizhou Institute of Technology, (Grant/Award Number: QKH20167093)Publication History
Received: 01 January 2019
Accepted after revision: 10 February 2019
Publication Date:
15 April 2019 (online)
Abstract
An efficient process was developed for the perfluoroalkylation of N-arylacrylamides through an organocatalyzed photoredox/cyclization reaction of N-arylacrylamides with inexpensive perfluoroalkyl iodide reagents. The reaction employs an inexpensive organic dye, eosin Y, as the photoredox catalyst and is run under irradiation by a 26 W LED lightbulb.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611781.
- Supporting Information
Primary Data
- Primary Data
Primary data for this article are available online at https://zenodo.org/record/4610527 and can be cited using the following DOI: 10.5281/zenodo.4610527. Please note that the DOI for the Primary Data associated with this article was updated on April 16, 2021.
-
References and Notes
-
1a
Chambers RD.
Fluorine in Organic Chemistry 1973
- 1b Organofluorine Chemistry: Principles and Commercial Applications . Banks RE, Smart BE, Tatlow JC. Plenum Press; New York: 1994
- 1c Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2004
-
2a
Umemoto T.
Chem. Rev. 1996; 96: 1757
-
2b
Prakash GK. S,
Yudin AK.
Chem. Rev. 1997; 97: 757
-
2c
Ma J.-A,
Cahard D.
Chem. Rev. 2008; 108: PR1
-
2d
Kirk KL.
Org. Process Res. Dev. 2008; 12: 305
-
2e
Purser S,
Moore PR,
Swallow S,
Gouverneur V.
Chem. Soc. Rev. 2008; 37: 320
-
2f
Ma J.-A,
Cahard D.
J. Fluorine Chem. 2007; 128: 975
-
2g
Tomashenko OA,
Grushin VV.
Chem. Rev. 2011; 111: 4475
-
3a
Chu L,
Qing F.-L.
J. Am. Chem. Soc. 2010; 132: 7262
-
3b
Weng Z,
Li H,
He W,
Yao L.-F,
Tan J,
Chen J,
Yuan Y,
Huang K.-W.
Tetrahedron 2012; 68: 2527
-
3c
Jiang X,
Chu L,
Qing F.-L.
J. Org. Chem. 2012; 77: 1251
-
3d
Luo D.-F,
Xu J,
Fu Y,
Guo Q.-X.
Tetrahedron Lett. 2012; 53: 2769
-
3e
Herrmann AT,
Smith LL,
Zakarian A.
J. Am. Chem. Soc. 2012; 134: 6976
-
3f
Hu B,
Bezpalko MW,
Fei C,
Dickie DA,
Foxman BM,
Deng L.
J. Am. Chem. Soc. 2018; 140: 13913
-
3g
Hu B,
Deng L.
Angew. Chem. Int. Ed. 2018; 57: 2233
-
4a
Bravo A,
Bjørsvik H.-R,
Fontana F,
Liguori L,
Mele A,
Minisci F.
J. Org. Chem. 1997; 62: 7128
-
4b
Zhang X.-G,
Dai H.-X,
Wasa M,
Yu J.-Q.
J. Am. Chem. Soc. 2012; 134: 11948
-
4c
Wang X,
Truesdale L,
Yu J.-Q.
J. Am. Chem. Soc. 2010; 132: 3648
-
4d
Loy RN,
Sanford MS.
Org. Lett. 2011; 13: 2548
-
4e
Hafner A,
Bihlmeier A,
Nieger M,
Klopper W,
Bräse S.
J. Org. Chem. 2013; 78: 7938
-
4f
Chen X,
Tan Z,
Gui Q,
Hu L,
Liu J,
Wu J,
Wang G.
Chem. Eur. J. 2016; 22: 6218
-
5a
Xiao J.-C,
Ye C,
Shreeve JM.
Org. Lett. 2005; 7: 1963
-
5b
Anton L,
Vladimir VG.
J. Am. Chem. Soc. 2007; 135: 12584
-
5c
Oishi M,
Kondo H,
Amii H.
Chem. Commun. 2009; 1909
-
5d
Morimoto H,
Tsubogo T,
Litvinas ND,
Hartwig JF.
Angew. Chem. Int. Ed. 2011; 50: 3793
-
5e
Popov I,
Lindeman S,
Daugulis O.
J. Am. Chem. Soc. 2011; 133: 9286
-
6a
Chu L,
Qing F.-L.
Org. Lett. 2010; 12: 5060
-
6b
Senecal TD,
Parson AT,
Buchwald S.
J. Org. Chem. 2011; 76: 1174
-
6c
Qi Q,
Shen Q,
Lu L.
J. Am. Chem. Soc. 2012; 134: 6548
-
6d
Ye Y,
Sanford MS.
J. Am. Chem. Soc. 2012; 134: 9034
-
6e
Wu L,
Wang F,
Wan X,
Wang D,
Chen P,
Liu G.
J. Am. Chem. Soc. 2017; 139: 2904
-
7a
Parsons AT,
Buchwald SL.
Angew. Chem. Int. Ed. 2011; 50: 9120
-
7b
Wang X,
Ye Y,
Zhang S,
Feng J,
Xu Y,
Zhang Y,
Wang J.
J. Am. Chem. Soc. 2011; 133: 16410
-
7c
Chu L,
Qing F.-L.
Org. Lett. 2012; 14: 2106
-
7d
He Z,
Luo T,
Hu M,
Cao Y,
Hu J.
Angew. Chem. Int. Ed. 2012; 51: 3944
-
7e
Yang B,
Xu X.-H,
Qing F.-L.
Org. Lett. 2016; 18: 5956
-
7f
Wang F,
Wang D,
Wan X,
Wu L,
Chen P,
Liu G.
J. Am. Chem. Soc. 2016; 138: 15547
-
8a
Huang W.-Y,
Hung B.-N,
Hu C.-M.
J. Fluorine Chem. 1983; 23: 193
-
8b
Huang W.-Y,
Wang W,
Huang B.-N.
Acta Chim. Sin. (Engl. Ed.) 1985; 43: 409
-
8c
Huang W.-Y,
Ma W,
Chen J,
Zhan B.
Chin. J. Chem. 1990; 10: 244
-
8d
Huang B.-N,
Liu J.-T,
Huang W.-Y.
J. Chem. Soc., Chem. Commun. 1990; 1781
-
8e
Huang B.-N,
Liu J.-T,
Huang W.-Y.
J. Chem. Soc., Perkin. Trans. 1 1994; 101
-
8f
Huang W.-Y,
Ma W.-P.
Chin. J. Chem. 1992; 10: 180
-
8g
Huang W.-Y,
Yu H.-B.
Chin. Chem. Lett. 1996; 7: 425
-
9a
Huang B.-N,
Liu J.-T.
Tetrahedron Lett. 1990; 31: 2711
-
9b
Huang B.-N,
Liu J.-T.
J. Fluorine Chem. 1993; 64: 37
-
9c
Wu F.-H,
Huang B.-N,
Lu L,
Huang W.-Y.
J. Fluorine Chem. 1996; 80: 91
-
9d
Petrik V,
Cahard D.
Tetrahedron Lett. 2007; 48: 3327
-
9e
Dmowski W,
Piasecka-Maciejewska K.
J. Fluorine Chem. 2010; 131: 746
-
9f
Fang X,
Ying Q,
Chen Y,
Yang X,
Yang X,
Wu F.
J. Fluorine Chem. 2008; 129: 280
-
10a
Matsui M,
Shibata K,
Muramatsu H,
Sawada H,
Nakayama M.
Synlett 1991; 113
-
10b
Qiu W,
Burton DJ.
J. Fluorine Chem. 1993; 60: 93
-
10c
Yajima T,
Nagano H.
Org. Lett. 2007; 9: 2513
-
10d
Qi Q,
Shen Q,
Lu L.
J. Fluorine Chem. 2012; 133: 115
-
10e
Barata-Vallejo S,
Postigo A.
Eur. J. Org. Chem. 2012; 1889
-
11a
Nagib DA,
Scott ME,
MacMillan DW. C.
J. Am. Chem. Soc. 2009; 131: 10875
-
11b
Pham PV,
Nagib DA,
MacMillan DW. C.
Angew. Chem. Int. Ed. 2011; 50: 6119
-
12a
Neumann M,
Füldner S,
König B,
Zeitler K.
Angew. Chem. Int. Ed. 2011; 50: 951
-
12b
Neumann M,
Zeitler K.
Org. Lett. 2012; 14: 2658
-
12c
Hari DP,
Schroll P,
König B.
J. Am. Chem. Soc. 2012; 134: 2958
-
13a
Zhang Z,
Tang X,
Dolbier Jr. WR.
Org. Lett. 2015; 17: 4401
-
13b
Zhang Z,
Martinez H,
Dolbier WR.
J. Org. Chem. 2017; 82: 2589
-
14a
Yu W,
Xu X.-H,
Qing F.-L.
Org. Lett. 2016; 18: 5130
-
14b
Lin Q.-Y,
Ran Y,
Xu X.-H,
Qing F.-L.
Org. Lett. 2016; 18: 2419
-
15a
Li L,
Huang M,
Liu C,
Xiao J.-C,
Chen Q.-Y,
Guo Y,
Zhao Z.-G.
Org. Lett. 2015; 17: 4714
-
15b
Wu X,
Meng C,
Yuan X,
Jia X,
Qian X,
Ye J.
Chem. Commun. 2015; 51: 11864
-
15c
Lefebvre Q,
Hoffmann N,
Rueping M.
Chem. Commun. 2016; 52: 2493
-
16a
Dounay AB,
Overman LE.
Chem. Rev. 2003; 103: 2945
-
16b
Marti C,
Carreira EM.
Eur. J. Org. Chem. 2003; 2209
-
16c
Zhou F,
Liu Y.-L,
Zhou J.
Adv. Synth. Catal. 2010; 352: 1381
-
16d
Rottmann M,
McNamara C,
Yeung BK. S,
Lee MC. S,
Zou B,
Russell B,
Seitz P,
Plouffe DM,
Dharia NV,
Tan J,
Cohen SB,
Spencer KR,
González-Páez GE,
Lakshminarayana SB,
Goh A,
Suwanarusk R,
Jegla T,
Schmitt EK,
Beck H.-P,
Brun R,
Nosten F,
Renia L,
Dartois V,
Keller TH,
Fidock DA,
Winzeler EA,
Diagana TT.
Science 2010; 329: 1175
-
17a
Matcha K,
Narayan R,
Antonchick AP.
Angew. Chem. Int. Ed. 2013; 52: 7985
-
17b
Meng Y,
Guo L.-N,
Wang H,
Duan X.-H.
Chem. Commun. 2013; 49: 7540
-
17c
Fu W,
Xu F,
Fu Y,
Zhu M,
Zhou D.
J. Org. Chem. 2013; 78: 12202
-
17d
Wang H,
Guo L.-N,
Duan X.-H.
Org. Lett. 2013; 15: 5254
-
17e
Zhang M.-Z,
Sheng W.-B,
Jiang Q,
Tian M,
Yin Y,
Guo C.-C.
J. Org. Chem. 2014; 79: 10829
-
18a
Zhao Y,
Li Z,
Sharma UK,
Sharma N,
Song G,
Van der Eycken EV.
Chem. Commun. 2016; 52: 6395
-
18b
Jiang Y.-Y,
Liang S,
Zeng C.-C,
Hu L.-M,
Sun B.-G.
Green Chem. 2016; 18: 6311
-
18c
Yang L,
Lu W,
Zhou W,
Zhang F.
Green Chem. 2016; 18: 2941
-
18d
Patel P,
Borah G.
Chem. Commun. 2017; 53: 443
-
18e
Yu L.-Z,
Wei Y,
Shi M.
Chem. Commun. 2017; 53: 8980
-
19a
Yen A,
Lautens M.
Org. Lett. 2018; 20: 4323
-
19b
Li Y,
Wang K,
Ping Y,
Wang Y,
Kong W.
Org. Lett. 2018; 20: 921
-
19c
Kilaru P,
Acharya SP,
Zhao P.
Chem. Commun. 2018; 54: 924
-
19d
Wu Z.-J,
Li S.-R,
Long H,
Xu H.-C.
Chem. Commun. 2018; 54: 4601
-
20a
Mu X,
Wu T,
Wang H.-Y,
Guo Y.-L,
Liu G.
J. Am. Chem. Soc. 2012; 134: 878
-
20b
Egami H,
Shimizu R,
Sodeoka M.
J. Fluorine Chem. 2013; 152: 51
-
20c
Kong W,
Casimiro M,
Merino E,
Nevado C.
J. Am. Chem. Soc. 2013; 135: 14480
-
20d
Liu J,
Zhuang S,
Gui Q,
Chen X,
Yang Z,
Tan Z.
Eur. J. Org. Chem. 2014; 2014: 3196
-
20e
Wang J.-Y,
Su Y.-M,
Yin F,
Bao Y,
Zhang X,
Xu Y.-M,
Wang X.-S.
Chem. Commun. 2014; 50: 4108
-
21a
Tang S,
Li Z.-H,
Wang M.-W,
Lia Z.-P,
Sheng R.-L.
Org. Biomol. Chem. 2015; 13: 5285
-
21b
Mai W.-P,
Sun B,
Qian G.-S,
Yuan J.-W,
Mao P,
Yang L.-R,
Xiao Y.-M.
Tetrahedron 2015; 71: 8416
-
21c
Wang H,
Guo L.-N,
Duan X.-H.
J. Org. Chem. 2016; 81: 860
-
22a
Ji P.-Y,
Zhang M.-Z,
Xu J.-W,
Liu Y.-FGuo C.-C.
J. Org. Chem. 2016; 81: 5181
-
22b
Guo J.-Y,
Wu R.-X,
Jin J.-K,
Tian S.-K.
Org. Lett. 2016; 18: 3850
-
22c
Liu F,
Li P.
J. Org. Chem. 2016; 81: 6972
-
22d
Li C.-X,
Tu D.-S,
Yao R,
Yan H,
Lu C.-S.
Org. Lett. 2016; 18: 4928
-
23
Srivastavaa V,
Singh PP.
RSC Adv. 2017; 7: 31377
-
24a
Organocatalyzed Photoredox Perfluoroalkylation/Cyclization of N-Arylacrylamides Perfluoroalkyl Iodides; General ProcedureA 25 mL tube was charged with the appropriate N-arylacrylamide 1 (0.3 mmol), RFI 2 (0.9 mmol), Cs2CO3 (0.3 mmol), and eosin Y (5% mmol). DMA (2 mL) was added and the tube was purged with argon. The mixture was stirred and irradiated with a 26 W compact LED lightbulb at 65 °C for 16 h until the reaction was completed. H2O (10 mL) and CH2Cl2 (10 mL) were added successively to the cooled reaction mixture, the organic phase was separated, and the aqueous phase was further extracted with CH2Cl2 (3 × 30 mL). The combined organic layers were dried (Mg2SO4) and concentrated under vacuum. The residue was purified performed by flash column chromatography (silica
gel).1,3-Dimethyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-1,3-dihydro-2H-indol-2-one (3a)Isolated by flash column chromatography [silica gel, PE–EtOAc (50:1)] as a yellow oil; yield: 100 mg (85%). IR (neat): 2979, 1719, 1619, 1470, 1126, 947 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.44 (s, 3 H), 2.54–2.68 (m, 1 H), 2.83–2.95 (m, 1 H), 3.25 (s, 3 H), 6.89 (d, J = 8.0 Hz, 1 H), 7.09 (t, J = 7.6 Hz, 1 H), 7.28 (d, J = 7.6 Hz, 1 H), 7.32 (t, J = 8.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 25.8, 26.4, 26.5, 36.9 (t, J = 20.1 Hz), 44.1 (d, J = 1.8 Hz), 108.4, 122.6, 123.1, 123.4, 123.5, 128.5, 128.8, 131.2, 142.8, 178.5.19F NMR (376 MHz, CDCl3): δ = –125.64 to –125.42 (m, 2 F), –124.21 (d, J = 9.4 Hz, 2 F), –114.68 to –113.84 (m, 1 F), –108.96 to –108.16 (m, 1 F), –80.76 (t, J = 9.4 Hz, 3 F). HRMS (ESI): m/z
[M+] calcd for C15H12F9NO: 393.0775; found: 393.0778.1,3,7-Trimethyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-1,3-dihydro-2H-indol-2-one (3b)Isolated by flash column chromatography [silica gel, PE–EtOAc (50:1)] as a yellow oil; yield: 91 mg (75%). IR (neat): 2918, 1722, 1621, 1410, 1145, 670 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.40 (s, 3 H), 2.60 (s, 3 H), 2.50–2.63 (m, 1 H), 2.82–2.95 (m, 1 H), 3.53 (s, 3 H), 6.97 (t, J = 7.6 Hz, 1 H), 7.04 (d, J = 7.2 Hz, 1 H), 7.10 (d, J = 6.8 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 19.1, 26.4, 29.9, 37.1 (t, J = 20.3 Hz), 44.5 (d, J = 1.9 Hz), 120.1, 121.3, 121.4 (2 C), 122.5, 131.9, 132.2 (2 C), 140.6, 179.3. 19F NMR (376 MHz, CDCl3): δ = –125.71 to –125.50 (m, 2 F), –124.27 (d, J = 9.8 Hz, 2 F), –114.03 to –113.94 (m, 1 F), –109.01 to –108.24 (m, 1
F), –80.86 to –80.79 (m, 3 F). HRMS (ESI): m/z [M+] calcd for C16H14F9NO: 407.0932; found: 407.0931.