Subscribe to RSS
DOI: 10.1055/s-0037-1611814
Cp*CoIII-Catalyzed C–H Functionalization and Asymmetric Reactions Using External Chiral Sources
This work was supported in part by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number JP15H05802) in Precisely Designed Catalysts with Customized Scaffolding and the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number JP18H04637) in Hybrid Catalysis.Publication History
Received: 06 March 2019
Accepted after revision: 10 April 2019
Publication Date:
07 May 2019 (online)

Abstract
This account describes Cp*CoIII-catalyzed C–H functionalization reactions developed in our group between 2013 and 2018. Cp*CoIII catalysts not only serve as inexpensive alternatives to Cp*RhIII catalysts but also exhibit unique reactivity and selectivity in several transformations. In the latter part of this review, we introduce catalytic asymmetric C–H functionalization reactions using achiral RhIII or CoIII catalysts with chiral disulfonates or carboxylic acids as external chiral sources.
1 Introduction and Overview
2 Cp*CoIII-Catalyzed C–H Functionalization Reactions
2.1 C–H Addition Reactions to Polar Double Bonds
2.2 Cp*Co(CO)I2 and [Cp*CoI2]2 Precursors for the C2-selective C–H Amidation of Indoles
2.3 C–H Functionalization of Carbamoyl-Protected Indoles Using Alkynes
2.4 C–H Allylation Using Allyl Alcohols
2.5 Cyclization Reactions of O-Acyloximes and Alkynes
2.6 Other Miscellaneous Reactions
3 Enantioselective C–H Functionalization Reactions by Hybrid Catalysis
3.1 Cp*RhIII/Chiral Disulfonate Catalysts for the Enantioselective C–H Addition to Enones
3.2 Enantioselective C–H Cleavage Using Chiral Carboxylic Acids
4 Summary and Perspective
-
References
- 1a Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
- 1b Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
- 1c Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
- 1d He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 1e Hummel JR, Boerth JA, Ellman JA. Chem. Rev. 2017; 117: 9163
- 1f Karimov RR, Hartwig JF. Angew. Chem. Int. Ed. 2018; 57: 4234
- 1g Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 1h Abrams DJ, Provencher PA, Sorensen EJ. Chem. Soc. Rev. 2018; 47: 8925 (i) Rej, S.; Chatani, N. Angew. Chem. Int. Ed. 2018, in press; DOI: 10.1002/anie.201808159
- 2 Trost BM. Science 1991; 254: 1471
- 3 Wender PA, Miller BL. Nature 2009; 460: 197
- 4a Ueura K, Satoh T, Miura M. Org. Lett. 2007; 9: 1407
- 4b Ueura K, Satoh T, Miura M. J. Org. Chem. 2007; 72: 5362
- 5a Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
- 5b Patureau FW, Wencel-Delord J, Glorius F. Aldrichimica Acta 2012; 45: 31
- 5c Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
- 5d Chiba S. Chem. Lett. 2012; 41: 1554
- 5e Kuhl N, Schröder N, Glorius F. Adv. Synth. Catal. 2014; 356: 1443
- 5f Song G, Li X. Acc. Chem. Res. 2015; 48: 1007
- 5g Piou T, Rovis T. Acc. Chem. Res. 2018; 51: 170
- 6a Kulkarni AA, Daugulis O. Synthesis 2009; 4087
- 6b Miao J, Ge H. Eur. J. Org. Chem. 2015; 7859
- 6c Pototschnig G, Maulide N, Schnürch M. Chem. Eur. J. 2017; 23: 9206
- 6d Rajesh N, Barsu N, Sundararaju B. Tetrahedron Lett. 2018; 59: 862
- 6e Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 7a Murahashi S. J. Am. Chem. Soc. 1955; 77: 6403
- 7b Murahashi S, Horiie S. J. Am. Chem. Soc. 1956; 78: 4816
- 7c Halbritter G, Knoch F, Wolski A, Kisch H. Angew. Chem., Int. Ed. Engl. 1994; 33: 1603
- 7d Lenges CP, Brookhart M. J. Am. Chem. Soc. 1997; 119: 3165
- 7e Bolig AD, Brookhart M. J. Am. Chem. Soc. 2007; 129: 14544
- 8 Gao K, Lee P.-S, Fujita T, Yoshikai N. J. Am. Chem. Soc. 2010; 132: 12249
- 9a Gao K, Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
- 9b Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 9c Usman M, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Synthesis 2017; 49: 1419
- 9d Yoshino T, Matsunaga S. Asian J. Org. Chem. 2018; 7: 1193
- 10a Kanamori K, Broderick WE, Jordan RF, Willett RD, Legg JI. J. Am. Chem. Soc. 1986; 108: 7122
- 10b Broderick WE, Kanamori K, Willett RD, Legg JI. Inorg. Chem. 1991; 30: 3875
- 10c Avilés T, Dinis A, Calhorda MJ, Pinto P, Félix V, Drew MG. B. J. Organomet. Chem. 2001; 625: 186
- 11a Grigorjeva L, Daugulis O. Angew. Chem. Int. Ed. 2014; 53: 10209
- 11b Review: Kommagalla Y, Chatani N. Coord. Chem. Rev. 2017; 350: 117
- 12a Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
- 12b Wang S, Chen S.-Y, Yu X.-Q. Chem. Commun. 2017; 53: 3165
- 12c Chirila PG, Whiteoak CJ. Dalton Trans. 2017; 46: 9721
- 12d Yoshino T, Matsunaga S. Adv. Organomet. Chem. 2017; 68: 197
- 13a Park J, Chang S. Chem. Asian J. 2018; 13: 1089
- 13b Peneau A, Guillou C, Chabaud L. Eur. J. Org. Chem. 2018; 5777
- 14a Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
- 14b Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
- 15a Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
- 15b Ackermann L. Chem. Rev. 2011; 111: 1315
- 15c Davies DL, Macgregor SA, McMullin CL. Chem. Rev. 2017; 117: 8649
- 15d Flegeau EF, Bruneau C, Dixneuf PH, Jutand A. J. Am. Chem. Soc. 2011; 133: 10161
- 15e Jiang J, Ramozzi R, Morokuma K. Chem. Eur. J. 2015; 21: 11158
- 15f Sen M, Emayavarambanm B, Barsu N, Premkumar JR, Sundararaju B. ACS Catal. 2016; 6: 2792
- 17a Hyster TK, Knörr L, Ward TR, Rovis T. Science 2012; 338: 500
- 17b Zheng J, Cui W.-J, Zheng C, You S.-L. J. Am. Chem. Soc. 2016; 138: 5242
- 17c Jia Z.-J, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
- 17d Smits G, Audic B, Wodrich MD, Corminboeuf C, Cramer N. Chem. Sci. 2017; 8: 7174
- 17e Sun Y, Cramer N. Chem. Sci. 2018; 9: 2981
- 17f Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. Angew. Chem. Int. Ed. 2018; 57: 7714
- 18a Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
- 18b Newton CG, Kossler D, Cramer N. J. Am. Chem. Soc. 2016; 138: 3935
- 19 Yoshino T, Ikemoto H, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2013; 52: 2207
- 20a Fischer EO, Fischer RD. Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol. 1961; 16: 556
- 20b Fairhurst G, White C. J. Chem. Soc., Dalton Trans. 1979; 1531
- 20c Kölle U, Fuss B, Rajasekharan MV, Ramakrishna BL, Ammeter JH, Böhm MC. J. Am. Chem. Soc. 1984; 106: 4152
- 21 Yoshino T, Ikemoto H, Matsunaga S, Kanai M. Chem. Eur. J. 2013; 19: 9142
- 22 Sun B, Yoshino T, Matsunaga S, Kanai M. Adv. Synth. Catal. 2014; 356: 1491
- 23 Sun B, Yoshino T, Matsunaga S, Kanai M. Chem. Commun. 2015; 51: 4659
- 24 Fairhurst G, White C. J. Chem. Soc., Dalton Trans. 1979; 1524
- 25 Frith SA, Spencer J. Inorg. Synth. 1990; 28: 273
- 26 Ellman and a co-worker reported the synthesis of [Co*Co(C6H6)][B(C6F5)4]2 from [Co*Co(C6H6)](PF6)2: Hummel JR, Ellman JA. J. Am. Chem. Soc. 2015; 137: 490
- 27 Ikemoto H, Yoshino T, Sakata K, Matsunaga S, Kanai M. J. Am. Chem. Soc. 2014; 136: 5424
- 28 Schipper DJ, Hutchinson M, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6910
- 29 Ikemoto H, Tanaka R, Sakata K, Kanai M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2017; 56: 7156
- 30 Sakata K, Eda M, Kitaoka Y, Yoshino T, Matsunaga S. J. Org. Chem. 2017; 82: 7379
- 31a Sanjosé-Orduna J, Gallego D, Garcia-Roca A, Martin E, Benet-Buchholz J, Pérez-Temprano MH. Angew. Chem. Int. Ed. 2017; 56: 12137
- 31b Sen M, Rajesh N, Emayavaramban B, Premkumar JR, Sundararaju B. Chem. Eur. J. 2018; 24: 342
- 32a Wang H, Schröder N, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 5386
- 32b Yu S, Li X. Org. Lett. 2014; 16: 1200
- 32c Feng C, Feng D, Loh T.-P. Chem. Commun. 2015; 51: 342
- 32d Jo H, Han S, Park J, Choi M, Han SH, Jeong T, Lee S.-Y, Kwak JH, Jung YH, Kim IS. Tetrahedron 2016; 72: 571
- 32e Mishra NK, Sharma S, Park J, Han S, Kim IS. ACS Catal. 2017; 7: 2821
- 33 Shi Z, Boultadakis-Arapinis M, Glorius F. Chem. Commun. 2013; 49: 6489
- 35a Yu D.-G, Gensch T, de Azambuja F, Vásquez-Céspedes S, Glorius F. J. Am. Chem. Soc. 2014; 136: 17722
- 35b Moselage M, Sauermann N, Koeller J, Liu W, Gelman D, Ackermann L. Synlett 2015; 26: 1596
- 35c A nonactivated allyl alcohol was examined for a C–H allylation reaction using a Cp*CoIII catalyst: Gensch T, Vásquez-Céspedes S, Yu D.-G, Glorius F. Org. Lett. 2015; 17: 3714
- 36 Suzuki Y, Sun B, Sakata K, Yoshino T, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2015; 54: 9944
- 37 Kalsi D, Laskar RA, Barsu N, Premkumar JR, Sundararaju B. Org. Lett. 2016; 18: 4198
- 38 Bunno Y, Murakami N, Suzuki Y, Kanai M, Yoshino T, Matsunaga S. Org. Lett. 2016; 18: 2216
- 39 For an early report on the use of a fluorinated alcohol solvent in Cp*CoIII-catalyzed reactions, see: Sen M, Kalsi D, Sundararaju B. Chem. Eur. J. 2015; 21: 15529
- 40 Sun B, Yoshino T, Kanai M, Matsunaga S. Angew. Chem. Int. Ed. 2015; 54: 12968
- 41 For related work, see: Wang H, Koeller J, Liu W, Ackermann L. Chem. Eur. J. 2015; 21: 15525 ; and ref. 39
- 42a Too PC, Wang Y.-F, Chiba S. Org. Lett. 2010; 12: 5688
- 42b Too PC, Chua SH, Wong SH, Chiba S. J. Org. Chem. 2011; 76: 6159
- 42c Zhang X, Chen D, Zhao M, Zhao J, Jia A, Li X. Adv. Synth. Catal. 2011; 353: 719
- 43 Tanaka R, Ikemoto H, Kanai M, Yoshino T, Matsunaga S. Org. Lett. 2016; 18: 5732
- 44 Zhang P, Li M, Xue X.-S, Xu C, Zhao Q, Liu Y, Wang H, Guo Y, Lu L, Shen Q. J. Org. Chem. 2016; 81: 7486
- 45 Yoshida M, Kawai K, Tanaka R, Yoshino T, Matsunaga S. Chem. Commun. 2017; 53: 5974
- 46 For related work, see: Liu X.-G, Li Q, Wang H. Adv. Synth. Catal. 2017; 359: 1942
- 47 Murakami N, Yoshida M, Yoshino T, Matsunaga S. Chem. Pharm. Bull. 2018; 66: 51
- 48a Kong L, Zhou X, Li X. Org. Lett. 2016; 18: 6320
- 48b Zell D, Müller V, Dhawa U, Bursch M, Presa RR, Grimme S, Ackermann L. Chem. Eur. J. 2017; 23: 12145
- 49a Nahm S, Weinreb SM. Tetrahedron Lett. 1981; 22: 3815
- 49b Balasubramaniam S, Aidhen IS. Synthesis 2008; 3707
- 49c Nowak M. Synlett 2015; 26: 561
- 50 Our group also reported Cp*CoIII-catalyzed oxidative Heck reactions of amides: Suzuki Y, Sun B, Yoshino T, Kanai M, Matsunaga S. Tetrahedron 2015; 71: 4552
- 51 Kawai K, Bunno Y, Yoshino T, Matsunaga S. Chem. Eur. J. 2018; 24: 10231
- 52a Park J, Chang S. Angew. Chem. Int. Ed. 2015; 54: 14103
- 52b Liang Y, Liang Y.-F, Tang C, Yuan Y, Jiao N. Chem. Eur. J. 2015; 21: 16395
- 52c Park Y, Park KT, Kim JG, Chang S. J. Am. Chem. Soc. 2015; 137: 4534
- 52d Park Y, Jee S, Kim JG, Chang S. Org. Process Res. Dev. 2015; 19: 1024 ; and references therein
- 53 Tanimoto, I. Kawai, K. Sato, A. Yoshino, T.; Matsunaga, S. Heterocycles 2018, in press; DOI: 10.3987/COM-18-S(F)48.
- 54a Liu H, An Z, He J. ACS Catal. 2014; 4: 3543
- 54b Gwon D, Park S, Chang S. Tetrahedron 2015; 71: 4504
- 54c Zell D, Bursch M, Müller V, Grimme S, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 10378
- 55a Shao Z, Zhang H. Chem. Soc. Rev. 2009; 38: 2745
- 55b Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
- 55c Inamdar SM, Shinde VS, Patil NT. Org. Biomol. Chem. 2015; 13: 8116
- 56a Phipps RJ, Hamilton GL, Toste FD. Nat. Chem. 2012; 4: 603
- 56b Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
- 57 Mayer S, List B. Angew. Chem. Int. Ed. 2006; 45: 4193
- 58 Hamilton GL, Kang EJ, Mba M, Toste FD. Science 2007; 317: 496
- 59 Mukherjee S, List B. J. Am. Chem. Soc. 2007; 129: 11336
- 60a Chai Z, Rainey TJ. J. Am. Chem. Soc. 2012; 134: 3615
- 60b Wang P.-S, Lin H.-C, Zhai Y.-J, Han Z.-Y, Gong L.-Z. Angew. Chem. Int. Ed. 2014; 53: 12218
- 61a Pan SC, List B. Chem. Asian J. 2008; 3: 430
- 61b Hatano M, Maki T, Moriyama K, Arinobe M, Ishihara K. J. Am. Chem. Soc. 2008; 130: 16858
- 62 Hatano M, Ishihara K. Asian J. Org. Chem. 2014; 3: 352
- 63 Satake S, Kurihara T, Nishikawa K, Mochizuki T, Hatano M, Ishihara K, Yoshino T, Matsunaga S. Nat. Catal. 2018; 1: 585
- 64 Pesciaioli F, Dhawa U, Oliveira JC. A, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 15425
- 65 Kurihara T, Satake S, Hatano M, Ishihara K, Yoshino T, Matsunaga S. Chem. Asian J. 2018; 13: 2378
- 66a Shi B.-F, Maugel N, Zhang Y.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 4882
- 66b Chen G, Gong W, Zhuang Z, Andrä MS, Chen Y.-Q, Hong X, Yang Y.-F, Liu T, Houk KN, Yu J.-Q. Science 2016; 353: 1023
- 66c He J, Shao Q, Wu Q, Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 3344
- 66d Plata RE, Hill DE, Haines BE, Musaev DG, Chu L, Hickey DP, Sigman MS, Yu J.-Q, Blackmond DG. J. Am. Chem. Soc. 2017; 139: 9238
- 66e Wu Q.-F, Shen P.-X, He J, Wang X.-B, Zhang F, Shao Q, Zhu R.-Y, Mapelli C, Qiao JX, Poss MA, Yu J.-Q. Science 2017; 355: 499
- 66f Shao Q, Wu Q.-F, He J, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 5322
- 66g Shen P.-X, Hu L, Shao Q, Hong K, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 6545 ; for other works, see also ref. 14
- 67 Yang Y.-F, Hong X, Yu J.-Q, Houk KN. Acc. Chem. Res. 2017; 50: 2853
- 68a Jang Y.-S, Dieckmann M, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 15088
- 68b Jang Y.-S, Woźniak Ł, Pedroni J, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 12901
- 68c Sun Y, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 15539
- 69 For racemic reactions, see: Chan W.-W, Lo S.-F, Zhou Z, Yu W.-Y. J. Am. Chem. Soc. 2012; 134: 13565
- 70 Lin L, Fukagawa S, Sekine D, Tomita E, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2018; 57: 12048
- 71 Fukagawa S, Kato Y, Tanaka R, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 1153
- 72a Tan PW, Mak AM, Sullivan MB, Dixon DJ, Seayad J. Angew. Chem. Int. Ed. 2017; 56: 16550
- 72b Jain P, Verma P, Xia G, Yu J.-Q. Nat. Chem. 2017; 9: 140
- 72c Sen M, Emayavaramban B, Barsu N, Premkumar JR, Sundararaju B. ACS Catal. 2016; 6: 2792
- 72d Barsu N, Rahman MA, Sen M, Sundararaju B. Chem. Eur. J. 2016; 22: 9135
- 73 Adly FG, Gardiner MG, Ghanem A. Chem. Eur. J. 2016; 22: 3447
- 74 Iwata M, Yazaki R, Chen I.-H, Sureshkumar D, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2011; 133: 5554
Selected general reviews on C–H functionalization:
Reviews on Cp*RhIII-catalyzed C–H functionalization reactions:
General reviews on cobalt-catalyzed C–H functionalization:
Several stoichiometric C–H activation reactions with CoIII had been reported as of 2013:
Reviews on Cp*MIII-catalyzed C–H functionalization reactions:
Recent reviews on enantioselective C–H functionalization:
For external CMD, see:
For preparation and properties of Cp*CoIII-arene complexes:
For the isolation and structure of alkenyl-Co intermediates, see:
For other examples, see a review:
Early studies on Cp*CoIII-catalyzed C–H allylation reactions using activated allyl alcohols:
For early studies on Cp*CoIII-catalyzed C–H/C–F functionalization reactions:
Early studies on Cp*CoIII-catalyzed C–H amidation reactions using dioxazolones:
For dioxazolones as amidation reagents, see:
General reviews on enantioselective metal/organo hybrid catalysis:
For applications of ACDC to Pd-catalyzed C–H functionalization reactions, see:
A pioneering work:
Selected recent works:
For racemic reactions, see:
For related Pd-catalyzed enantioselective C–H functionalization reactions of thioamides, see:
For pioneering reports on Cp*CoIII-catalyzed racemic C(sp3)–H functionalization reactions, see: