Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(10): 1231-1236
DOI: 10.1055/s-0037-1611816
DOI: 10.1055/s-0037-1611816
letter
One-Pot Synthesis of Spiro-2H-pyrroles from N-Propargylic β-Enaminones
We thank the Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (Scientific and Technological Research Council of Turkey, TUBITAK; Grant No. 114Z811) and the Orta Doğu Teknik Üniversitesi (Middle East Technical University, METU; Grant No. GAP-103-2018-2770) for financial support of this research.Further Information
Publication History
Received: 28 February 2019
Accepted after revision: 12 April 2019
Publication Date:
03 May 2019 (online)
Abstract
A simple and general one-pot method for the synthesis of spiro-2H-pyrroles has been developed. Initially, cyclohexane-embedded β-enaminones with internal alkyne functionality were synthesized by conjugate addition of 1-ethynylcyclohexylamine to α,β-alkynic ketones, followed by palladium-catalyzed coupling of the resulting N-propargylic β-enaminones with aryl iodides. When subjected to basic conditions, the cyclohexane-embedded β-enaminones with internal alkyne functionality underwent tandem nucleophilic cyclization and benzylic C–H oxidation to furnish 3,4-diaryloyl-1-azaspiro[4.5]deca-1,3-diene derivatives in good yields.
Key words
pyrrole - 2H-pyrrole - N-propargylic β-enaminones - spiro compound - nucleophilic cyclization - benzylic C–H oxidationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611816. Experimental procedures, characterization data and copies of 1H and 13C NMR spectra for all new compounds are included.
- Supporting Information
-
References and Notes
- 1a d’Ischia M, Napolitano A, Pezzella A, Trofimov BA, Nedolya NA, Bergman J, Janosik T. In Comprehensive Heterocyclic Chemistry III, Vol. 3. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K, Jones G. Pergamon-Elsevier; Oxford: 2008. Chap. 3.01-3.04, 1-388
- 1b Quin LD, Tyrell JA. Fundamentals of Heterocyclic Chemistry . Wiley; New Jersey: 2010. Chap. 9.2, 222-225
- 1c Bergman J, Janosik T. In Modern Heterocyclic Chemistry, Vol. 4. Alvaroz-Builla J, Vaquero JJ, Barluenga J. Wiley-VCH; Weinheim: 2011. Chap. 4, 269-375
- 2a Trofimov BA, Mikhaleva AI, Schmidt EY, Sobenina LN. Chemistry of Pyrroles . CRC Press; Boca Raton: 2015
- 2b Lopchuk JM. In Progress in Heterocyclic Chemistry, Vol. 28. Gribble GW, Joule JA. Elsevier; Oxford: 2016. Chap. 5.2, 165-218
- 2c Vessally EA. RSC Adv. 2016; 6: 18619
- 2d Zhou NN, Zhu HT, Yanga DS, Guan ZH. Org. Biomol. Chem. 2016; 14: 7136
- 2e Sharma A, Piplani P. J. Heterocycl. Chem. 2017; 54: 27
- 3a Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
- 3b Khajuria R, Dham S, Kapoor KK. RSC Adv. 2016; 6: 37039
- 3c Mohamed MS, El-Hameed RH. A, Sayed A. J. Adv. Pharm. Res. 2017; 1: 1; DOI: 10.21608/APRH.2017.16155
- 3d Kaur R, Rani V, Abbot V, Kapoor Y, Konar D, Kumar K. J. Pharm. Chem. Chem. Sci. 2017; 1: 17
- 4a Rios R. Chem. Soc. Rev. 2012; 41: 1060
- 4b Molvi KI, Haque N, Awen BZ. S, Zameeruddin M. World J. Pharm. Pharm. Sci. 2014; 3: 536
- 4c Ziarani GM, Moradi R, Lashgari N. ARKIVOC 2016; (i): 1
- 4d Kotha S, Panguluri NR, Ali R. Eur. J. Org. Chem. 2017; 5316
- 4e Vacala TL, Carlson PR, Arreola-Hester A, Williams CG, Makhoul EW, Vadola PA. J. Org. Chem. 2018; 83: 1493
- 5a Aldeghi M, Malhotra S, Selwood DL, Chan AW. E. Chem. Biol. Drug Des. 2014; 83: 450
- 5b Richie TJ, Macdonald SJ. Drug Discovery Today 2009; 14: 1011
- 6a Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
- 6b Santos MM. M. Tetrahedron 2014; 70: 9735
- 6c Gubba Reddy BV, Gopal Reddy S, Durgaprasad M, Bhadra MP, Sridhar B. Org. Biomol. Chem. 2015; 13: 8729
- 7a Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I. N. Engl. J. Med. 2001; 345: 851
- 7b Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, Anderson S, Donovan M, Iverson E, Staiger C, Ptaszynska A. N. Engl. J. Med. 2008; 359: 2456
- 8a Kuhl H. Climacteric 2005; 8: 3
- 8b Wiesinger H, Berse M, Klein S, Gschwend S, Hochel J, Zollmann FS, Schutt B. Br. J. Clin. Pharmacol. 2015; 80: 1399
- 9a Claire M, Faraj H, Grassy G, Aumelas A, Rondot A, Auzou G. J. Med. Chem. 1993; 36: 2404
- 9b Friedman AJ. Cutis. 2015; 96: 216
- 10a Cheruku SR, Padmanilayam MP, Vennerstrom JL. Tetrahedron Lett. 2003; 44: 3701
- 10b Basaric N, Marinic Z, Sindler-Kulyk M. J. Org. Chem. 2006; 71: 9382
- 10c Savarin CG, Grise C, Murry JA, Reamer RA, Hughes DL. Org. Lett. 2007; 9: 981
- 10d Zhuo CX, Liu WB, Wu QF, You SL. Chem. Sci. 2012; 3: 205
- 10e Wu KJ, Dai LX, You SL. Chem. Commun. 2013; 49: 8620
- 10f Zhuo CX, Cheng Q, Liu WB, Zhao Q, You SL. Angew. Chem. Int. Ed. 2015; 54: 8475
- 11a Vessally E, Hosseinian A, Edjlali L, Bekhradnia A, Esrafili MD. RSC Adv. 2016; 6: 71662
- 11b Arshadi S, Vessally E, Edjlali L, Ghorbani-Kalhor E, Hosseinzadeh-Khanmiri R. RSC Adv. 2017; 7: 13198
- 12a Cacchi S, Fabrizi G, Filisti E. Org. Lett. 2008; 10: 2629
- 12b Karabiyikoglu S, Kelgokmen Y, Zora M. Tetrahedron 2015; 71: 4324
- 12c Cheng G, Weng Y, Yang X, Cui X. Org. Lett. 2015; 17: 3790
- 12d Goutham K, Kumar DA, Suresh S, Sridhar B, Narender R, Karunakar GV. J. Org. Chem. 2015; 80: 11162
- 12e Kelgokmen Y, Cayan Y, Zora M. Eur. J. Org. Chem. 2017; 7167
- 12f Zora M, Dikmen E, Kelgokmen Y. Tetrahedron Lett. 2018; 59: 823
- 12g Kelgokmen Y, Zora M. J. Org. Chem. 2018; 83: 8376
- 13 Karadeniz E, Zora M. Synthesis 2019; 51: 2157
- 14a Modern Oxidation Methods, 2nd ed. Backvall JE. Wiley-VCH; Weinheim: 2010
- 14b Comprehensive Organic Chemistry II, Vol. 7. Knochel P, Molander GA. Pergamon-Elsevier; Oxford: 2014
- 15a Moriyama K, Takemura M, Togo H. Org. Lett. 2012; 14: 2414
- 15b Liu J, Zhang X, Yi H, Liu C, Liu R, Zhang H, Zhuo K, Lei A. Green Chem. 2014; 16: 2344
- 15c Sterckx H, De Houwer J, Mensch C, Herrebout W, Tehrani KA, Maes BU. W. Beilstein J. Org. Chem. 2016; 12: 144
- 15d Yang Y, Ma H. Tetrahedron Lett. 2016; 57: 5278
- 15e Kolsi LE, Krogerus S, Brito V, Ruffer T, Lang H, Yli-Kauhaluoma J, Silvestre SM, Moreira VM. ChemistrySelect 2017; 2: 7008
- 16 Schiltz GE, Uyanik M, Ishihara K. In Comprehensive Organic Chemistry II, Vol. 6. Knochel P, Molander GA. Pergamon-Elsevier; Oxford: 2014. Chap. 6.13 and 6.14, 555-597
- 17a Rao HS. P, Jothilingam S. J. Org. Chem. 2003; 68: 5392
- 17b Rao HS. P, Jothilingama S, Scheeren HW. Tetrahedron 2004; 60: 1625
- 17c Luo H, Kang Y, Li Q, Yang L. Heteroat. Chem. 2008; 19: 144
- 17d Gardikis Y, Tsoungas PG, Potamitis C, Pairas G, Zervou M, Cordopatisa P. Heterocycles 2011; 83: 1291
- 17e Auria MD, Guarnaccio A, Racioppi R, Santagata A, Teghil R. Synlett 2013; 24: 943
- 17f Xin L, Xue J, Lei G, Qiao J. RSC Adv. 2015; 5: 42354
- 17g Shi X, Gopalakrishna TY, Wang Q, Chi C. Chem. Eur. J. 2017; 23: 8525
- 17h Baumgartner K, Kirschbaum T, Krutzek F, Dreuw A, Rominger F, Mastalerz M. Chem. Eur. J. 2017; 23: 17817
- 18 (2-Phenyl-1-azaspiro[4.5]deca-1,3-diene-3,4-diyl)bis(phenylmethanone) (5a); Typical Procedure: To a stirred solution of 1,3-diphenyl-3-((1-(phenylethynyl)cyclohexyl)amino)prop-2-en-1-one (3a; 106.5 mg, 0.263 mmol) in DMSO (3 mL) under air, was added Cs2CO3 (256.7 mg, 0.788 mmol) and the resulting solution was allowed to stir at 80 °C until all starting material was consumed as monitored by TLC (ca. 30 min). When the reaction was complete, the mixture was cooled to room temperature and diluted with chloroform (30 mL). To the diluted reaction mixture, an equal volume of ice was added, the mixture stirred for 10 minutes and the organic layer was separated from the aqueous layer. The aqueous layer was extracted with chloroform (2 × 15 mL) and the combined organic layers were dried over MgSO4, filtered and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel eluting with hexane/ethyl acetate (9:1 followed by 4:1) to afford spiro-2H-pyrrole 5a (76.1 mg, 69%) as a yellow solid (Rf = 0.44 in 4:1 hexane/ethyl acetate; mp 172.4–174.6 °C). 1H NMR (400 MHz, CDCl3): δ = 7.56–7.52 (m, 2 H), 7.49 (m, 2 H), 7.45–7.42 (m, 2 H), 7.41–7.34 (m, 2 H), 7.30–7.15 (m, 7 H), 2.13–1.97 (m, 4 H), 1.83 (d, J = 13.2 Hz, 1 H), 1.78–1.67 (m, 2 H), 1.56 (d, J = 11.0 Hz, 2 H), 1.35–1.24 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 194.5 (CO), 192.9 (CO), 170.9 (C), 166.7 (C), 137.8 (C), 137.2 (C), 137.1 (C), 134.0 (CH), 133.9 (CH), 133.7 (C), 130.1 (CH), 129.5 (CH), 129.3 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.5 (CH), 85.3 (C), 33.8 (CH2), 25.6 (CH2), 23.8 (CH2). IR (neat): 3057, 2913, 2857, 1657, 1597, 1578, 1445, 1337, 1315, 1296, 1258, 1154, 1071, 866, 744, 720, 688 cm–1. MS (ESI): m/z 420.20 [M + H]+. HRMS (ESI): m/z [M + H]+ calcd for C29H26NO2: 420.1958; found: 420.1968.
- 19 Hernandes MZ, Cavalcanti SM. T, Moreira DR. M, de Azevedo Jr. WF, Leite AC. L. Curr. Drug Targets 2010; 11: 303
- 20a Park BK, Kitteringham NR, O’Neill PM. Annu. Rev. Pharmacol. Toxicol. 2001; 41: 443
- 20b Filler R, Saha R. Future Med. Chem. 2009; 1: 777
- 20c Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 20d Wang J, Sanchez-Rosello M, Acena JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
For reviews, see:
For selected studies, see: