RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2019; 30(11): 1339-1345
DOI: 10.1055/s-0037-1611828
DOI: 10.1055/s-0037-1611828
letter
Stereoselective Synthesis of (Z)-Allyl Alcohols through Coinage-Metal-Catalyzed Nucleophilic Addition of Benzo[d]isoxazoles with Unactivated Propargyl Alcohols
We thank the China Postdoctoral Science Foundation (2017M612155), the Jiangxi Provincial Postdoctoral Foundation (2016RC37, and 2017KY44), and Natural Science Foundation of Jiangxi Province (20171BCB23038) for financial support.Weitere Informationen
Publikationsverlauf
Received: 31. März 2019
Accepted after revision: 28. April 2019
Publikationsdatum:
13. Mai 2019 (online)
Abstract
The Au/Ag-cocatalyzed stereoselective addition reaction of cyanophenol anion species generated in situ with unactivated propargyl alcohols to produce functionalized (Z)-allyl alcohols in mostly good yields is reported. Benzo[d]isoxazoles were found to be excellent building blocks for the production of highly reactive cyanophenol anions from Kemp elimination reactions, thus serving as a masked benzonitrile source for the preparation of organonitrile derivatives. Silver salt combined with gold catalyst were found to be necessary for the success of this transformation.
Key words
transition-metal catalysis - Kemp elimination - stereoselective - benzo[d]isoxazole - allyl alcoholSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611828.
- Supporting Information
- CIF File
-
References and Notes
- 1 Gräwert T, Span I, Bacher A, Groll M. Angew. Chem. Int. Ed. 2010; 49: 8802
- 2a Nobuyuki N. Allyl Alcohol and Monoallyl Derivatives . In Kirk-Othmer Encyclopedia of Chemical Technology, 5th ed., Vol. 2. Arza S. John Wiley & Sons, Inc; Hoboken: 2004: 234
- 2b Zhang J, Liao J, Wei Y, Cheng G, Luo R. Mini-Rev. Org. Chem. 2018; 15: 476
- 2c Tic WJ, Zoltanski A. Curr. Catal. 2015; 4: 155
- 3 Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science 2013; 340: 1065
- 4a Ríos-Lombardía N, Vidal C, Liardo E, Morís F, García-Álvarez J, González-Sabín J. Angew. Chem. Int. Ed. 2016; 55: 8691
- 4b Huo X, Yang G, Liu D, Liu Y, Gridnev I, Zhang W. Angew. Chem. Int. Ed. 2014; 53: 6776
- 4c Colbon P, Ruan J, Purdie M, Mulholland K, Xiao J. Org. Lett. 2011; 13: 5456
- 5 Huang L, Qi J, Wu X, Huang K, Jiang H. Org. Lett. 2013; 15: 2330
- 6a Werner E, Sigman M. J. Am. Chem. Soc. 2010; 132: 13981
- 6b Vellakkaran M, Andappan M, Kommu N. Green Chem. 2014; 16: 2788
- 6c Delcamp J, Brucks A, White M. J. Am. Chem. Soc. 2008; 130: 11270
- 7a Stone MT. Org. Lett. 2011; 13: 2326
- 7b Alacid E, Nájera C. Adv. Synth. Catal. 2007; 349: 2572
- 7c Adak L, Bhadra S, Ranu B. Tetrahedron Lett. 2010; 51: 3811
- 7d Berthiol F, Doucet H, Santelli M. Tetrahedron 2006; 62: 4372
- 8 Huang L, Qi J, Wu X, Wu W, Jiang H. Chem. Eur. J. 2013; 19: 15462
- 9a Gilmore K, Alabugin IV. Chem. Rev. 2011; 111: 6513
- 9b Abu Sohel SM, Liu RS. Chem. Soc. Rev. 2009; 38: 2269
- 9c Yun S, Wang K, Lee N, Mamidipalli P, Lee D. J. Am. Chem. Soc. 2013; 135: 4668
- 9d Hashmi AS. K. Angew. Chem. Int. Ed. 2010; 49: 5232
- 10 Liao S, Porta A, Cheng X, Ma X, Zanoni G, Zhang L. Angew. Chem. Int. Ed. 2018; 57: 8250
- 11 Sevov CS, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 9303
- 12 Zheng Y, Guo L, Zi W. Org. Lett. 2018; 20: 7039
- 13 The secondary propargyl alcohols were prepared according to a reported procedure, see: Ueda M, Sakaguchi T, Hayama M, Nakagawa T, Matsuo Y, Munechika A, Yoshida S, Yasuda H, Ryu I. Chem. Commun. 2016; 52: 13175
- 14a Zheng Z, Wang Z, Wang Y, Zhang L. Chem. Soc. Rev. 2016; 45: 4448
- 14b Harris RJ, Widenhoefer RA. Chem. Soc. Rev. 2016; 45: 4533
- 14c Zi W, Toste FD. Chem. Soc. Rev. 2016; 45: 4567
- 14d Alcaide B, Almendros P. Acc. Chem. Res. 2014; 47: 939
- 14e Ohno H. Isr. J. Chem. 2013; 53: 869
- 14f Jimenez-Nunez E, Echavarren AM. Chem. Rev. 2008; 108: 3326
- 14g Hashmi AS. K. Chem. Rev. 2007; 107: 3180
- 14h Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
- 15a Kemp DS, Casey ML. J. Am. Chem. Soc. 1973; 95: 6670
- 15b Casey ML, Kemp DS, Paul KG, Cox D. J. Org. Chem. 1973; 38: 2294
- 16a Zhao Y, Beuchat C, Domoto Y, Gajewy J, Wilson A, Mareda J, Sakai N, Matile S. J. Am. Chem. Soc. 2014; 136: 2101
- 16b Rçthlisberger D, Khersonsky O, Wollacott A, Jiang L, DeChancie J, Betker J, Gallaher J, Althoff E, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D. Nature 2008; 453: 190
- 16c Hu Y, Houk KN, Kikuchi K, Hotta K, Hilvert D. J. Am. Chem. Soc. 2004; 126: 8197
- 16d Kennan AJ, Whitlock HW. J. Am. Chem. Soc. 1996; 118: 3027
- 16e For a recent radical ring-opening of benzoisoxazole, see: Nunes C, Pinto S, Reva I, Fausto R. Tetrahedron Lett. 2016; 57: 5038
- 17 Han Y, Li X, Sun Z, Zhu X, Li M, Song X, Liang Y. Adv. Synth. Catal. 2017; 359: 2735
- 18 Pandit YB, Sahani RL, Liu R.-S. Org. Lett. 2018; 20: 6655
- 19 Chen Z, Han C, Fan C, Liu G, Pu S. ACS Omega 2018; 3: 8160
- 20a Li J, Zhang W, Zhang F, Chen Y, Li A. J. Am. Chem. Soc. 2017; 139: 14893
- 20b Chen Y, Zhang W, Ren L, Li J, Li A. Angew. Chem. Int. Ed. 2018; 57: 952
- 20c Zhang W, Ding M, Li J, Guo Z, Lu M, Chen Y, Liu L, Shen Y, Li A. J. Am. Chem. Soc. 2018; 140: 4227
- 20d Zhang X, Kakde B, Guo R, Yadav S, Gu Y, Li A. Angew. Chem. Int. Ed. 2019; 58: 6053
- 20e Lu Z, Li Y, Deng J, Li A. Nat Chem. 2013; 5: 679
- 20f Li Y, Zhu S, Li J, Li A. J. Am. Chem. Soc. 2016; 138: 3982
- 21 CCDC 1861094 (3l) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 22 Macsari I, Besidski Y, Csjernyik G, Nilsson L, Sandberg L, Yngve U, Uhlin K, Bueters T, Eriksson A, Lund P, Venyike E, Oerther S, Blakeman K, Luo L, Arvidsson P. J. Med. Chem. 2012; 55: 6866
- 23 Representative Procedure for the Preparation of 3a: To a stirred solution of propargyl alcohol 1a (0.5 mmol) in anhydrous toluene (3.0 mL) was added Ph3PAuCl (0.025 mmol), AgOAc (0.05 mmol) and Li2CO3 (0.5 mmol) at room temperature. The reaction was purged with N2, and then benzo[d]isoxazole 2a (0.75 mmol) dissolved in toluene (1.0 mL) was added by using a syringe. The reaction was heated to 80 °C for ca. 4–6 h. After completion of the reaction as indicated by TLC, the reaction was allowed to cool to room temperature, diluted with ethyl acetate (5.0 mL), and extracted. The combined organic phase was washed with brine, dried over Na2SO4, and concentrated to give the crude residue, which was purified by silica column chromatography (elute: PE/EtOAc = 20:1 v/v) to give the desired product 3a. Yield: 135 mg (79%); yellow solid; mp 105–106 °C. 1H NMR (400 MHz, CDCl3): δ = 7.54–7.51 (m, 1 H), 7.41–7.36 (m, 2 H), 7.24–7.16 (m, 6 H), 7.04 (d, J = 7.6 Hz, 2 H), 6.92 (t, J = 7.6 Hz, 1 H), 6.69 (d, J = 8.8 Hz, 1 H), 6.04 (d, J = 8.8 Hz, 1 H), 5.60 (d, J = 8.4 Hz, 1 H), 2.24 (br, 1 H), 2.23 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 158.8, 148.8, 139.8, 137.6, 134.3, 133.9, 133.5, 133.4, 129.3, 128.8, 125.9, 122.3, 121.1, 116.1, 115.5, 102.2, 68.9, 21.1. HRMS: m/z [M + H]+ calcd for C23H20NO2: 342.1489; found: 342.1487.
- 24 Representative Procedure for the Preparation of 4: A mixture of 3a (0.30 mmol), K2CO3 (0.45 mmol), and H2O2 (0.60 mmol) in DMSO (1.5 mL) was stirred at room temperature overnight. TLC was used to monitor the reaction until completion. Water (10 mL) was added, and the resulting mixture was extracted with ethyl acetate (3 × 10 mL). The combined organic solution was washed with brine, dried over MgSO4, and concentrated. The crude product was purified by silica gel column chromatography (PE/EtOAc = 2:1 v/v) to give the product 4. Yield: 72 mg (67%); colorless oil. 1H NMR (400 MHz, CDCl3): δ = 8.15–8.12 (m, 1 H), 7.66 (s, 1 H), 7.35 (br, 2 H), 7.22–7.09 (m, 6 H), 7.07–7.00 (m, 2 H), 6.98–6.96 (m, 1 H), 6.71 (d, J = 8.2 Hz, 1 H), 6.15 (d, J = 8.4 Hz, 1 H), 6.08 (d, J = 7.0 Hz, 1 H), 5.52 (d, J = 8.4 Hz, 1 H), 2.29 (br, 1 H), 2.24 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 166.7, 155.2, 148.4, 140.0, 137.8, 136.4, 133.4, 132.7, 129.4, 129.2, 128.8, 128.7, 126.1, 125.6, 122.5, 121.0, 115.1, 69.1, 21.1. HRMS: m/z [M + H]+ calcd for C23H22NO3: 360.1594; found: 360.1587.
For reviews, see:
For selected examples, see:
For recent and selected reviews of homogeneous gold catalysis, see:
For Ag+-catalyzed Toste type cyclizations of the terminal alkyne or unfunctionalized internal alkyne to construct natural product-like alkaloids, see: